Menu Close

show-that-a-cos-2cos-1-x-sin-1-x-1-x-2-b-sin-sin-cos-cos-cot-2-c-2cos-pi-3-p-1-3-if-p-is-small-enough-to-neglect-p-2-d-if-1-2-sin-1-




Question Number 63426 by Rio Michael last updated on 04/Jul/19
show that   (a) cos[2cos^(−1) (x) +sin^(−1) (x)]= −(√(1−x^2 ))   (b) ((sinα + sinβ)/(cosα−cosβ))=cot(((β−α)/2))  (c) 2cos((π/3)+p)≊ 1−(√3) if p is small enough to neglect p^2 .  (d) if θ =(1/2)sin^(−1) ((3/4)), show that sinθ−cosθ = ±(1/2)  (e)write tan3A in terms of tanA  (f) Factorise cosθ − cos3θ−cos5θ+cos7θ  (g)i) verify that f(x)=((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2tan3θ)/(1−tan^2 3θ))    ii) hence find in radians the general solution of  f(x)=1  sir Forkum Michael
showthat(a)cos[2cos1(x)+sin1(x)]=1x2(b)sinα+sinβcosαcosβ=cot(βα2)(c)2cos(π3+p)13ifpissmallenoughtoneglectp2.(d)ifθ=12sin1(34),showthatsinθcosθ=±12(e)writetan3AintermsoftanA(f)Factorisecosθcos3θcos5θ+cos7θ(g)i)verifythatf(x)=sin2θ+sin10θcos2θ+cos10θ=2tan3θ1tan23θii)hencefindinradiansthegeneralsolutionoff(x)=1sirForkumMichael
Commented by Tony Lin last updated on 04/Jul/19
(a)  let θ=cos^(−1) (x)⇒cosθ=x  let (π/2)−θ=sin^(−1) (x)⇒sinθ=(√(1−x^2 ))  cos[2θ+((π/2)−θ)]  =cos((π/2)+θ)  =−sinθ  =−(√(1−x^2 ))
(a)letθ=cos1(x)cosθ=xletπ2θ=sin1(x)sinθ=1x2cos[2θ+(π2θ)]=cos(π2+θ)=sinθ=1x2
Commented by Tony Lin last updated on 04/Jul/19
(b)  ((sinα+sinβ)/(cosα−cosβ))  =((2sin(((α+β)/2))cos(((α−β)/2)))/(−2sin(((α+β)/2))sin(((α−β)/2))))  =((−cos(((α−β)/2)))/(sin(((α−β)/2))))  =cot(((β−α)/2))
(b)sinα+sinβcosαcosβ=2sin(α+β2)cos(αβ2)2sin(α+β2)sin(αβ2)=cos(αβ2)sin(αβ2)=cot(βα2)
Commented by Tony Lin last updated on 04/Jul/19
(d)  θ=(1/2)sin^(−1) ((3/4))  2θ=sin^(−1) ((3/4))  ⇒(3/4)=sin2θ  ⇒(3/4)=2sinθcosθ  (sinθ−cosθ)^2   =1−2sinθcosθ  =(1/4)  ⇒sinθ−cosθ=±(1/2)
(d)θ=12sin1(34)2θ=sin1(34)34=sin2θ34=2sinθcosθ(sinθcosθ)2=12sinθcosθ=14sinθcosθ=±12
Commented by Tony Lin last updated on 04/Jul/19
(e)  tan3A  =tan(A+2A)  =((tanA+tan2A)/(1−tanAtan2A))  =((tanA+((2tanA)/(1−tan^2 A)))/(1−((2tan^2 A)/(1−tan^2 A))))  =((3tanA−tan^3 A)/(1−3tan^2 A))
(e)tan3A=tan(A+2A)=tanA+tan2A1tanAtan2A=tanA+2tanA1tan2A12tan2A1tan2A=3tanAtan3A13tan2A
Commented by Rio Michael last updated on 05/Jul/19
please explain the occurance of    (sinθ−cosθ)^2
pleaseexplaintheoccuranceof(sinθcosθ)2
Answered by som(math1967) last updated on 04/Jul/19
g(i) ((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2sin6θcos4θ)/(2cos6θcos4θ))=tan6θ  again tan6θ=tan2.3θ=((2tan3θ)/(1−tan^2 3θ))  ii) Again ((2tan3θ)/(1−tan^2 3θ))=1  ⇒tan^2 3θ+2tan3θ=1  ⇒tan^2 3θ+2tan3θ+1=2  ⇒(tan3θ+1)^2 =2  ⇒tan3θ=(√2) −1=tan(π/8)  ∴3θ=nπ+(π/8) ∴θ=(1/3)(nπ+(π/8))
g(i)sin2θ+sin10θcos2θ+cos10θ=2sin6θcos4θ2cos6θcos4θ=tan6θagaintan6θ=tan2.3θ=2tan3θ1tan23θii)Again2tan3θ1tan23θ=1tan23θ+2tan3θ=1tan23θ+2tan3θ+1=2(tan3θ+1)2=2tan3θ=21=tanπ83θ=nπ+π8θ=13(nπ+π8)

Leave a Reply

Your email address will not be published. Required fields are marked *