Menu Close

Show-that-a-N-10-143-1-9-is-composite-and-b-N-has-two-factors-each-of-which-is-a-series-of-a-G-P-




Question Number 25046 by Tinkutara last updated on 02/Dec/17
Show that  (a) N=((10^(143) −1)/9) is composite, and  (b) N has two factors each of which is  a series of a G.P.
Showthat(a)N=1014319iscomposite,and(b)NhastwofactorseachofwhichisaseriesofaG.P.
Answered by Rasheed.Sindhi last updated on 05/Dec/17
N(10)=((10^(143) −1)/9)=((10^(143) −1)/(10−1))    In general     N(x)=((x^(143) −1)/(x−1))      =(((x−1)(x^(142) +x^(141) +x^(140) +...+x+1))/((x−1)))      =x^(142) +x^(141) +x^(140) +...+x+1  So,  N(10)=10^(142) +10^(141) +...+10+1                 [N(10)=111...11 (143 times)       143=11×13     So the number can be grouped either     11 groups of 13 ′ones′ or 13 groups of 11 ′ones′.]     =(10^(12) +10^(11) +...10+1).10^(130)                   +(10^(12) +10^(11) +...10+1).10^(117)    +(10^(12) +10^(11) +...10+1).10^(104)     +...+(10^(12) +10^(11) +...10+1).10^(13)    +(10^(12) +10^(11) +...10+1).1    =(10^(12) +10^(11) +..10+1)(10^(130) +10^(117) +...10^(13) +1)  (a)Hence the number is composite.  (b)Both factors are geometric series.  10^(12) +10^(11) +10^(10) ...+10+1:common ratio 10^(−1) .  10^(130) +10^(117) +10^(104) +...+10^(13) +1:  common ratio 10^(−13)
N(10)=1014319=101431101IngeneralN(x)=x1431x1=(x1)(x142+x141+x140++x+1)(x1)=x142+x141+x140++x+1So,N(10)=10142+10141++10+1[N(10)=11111(143times)143=11×13Sothenumbercanbegroupedeither11groupsof13onesor13groupsof11ones.]=(1012+1011+10+1).10130+(1012+1011+10+1).10117+(1012+1011+10+1).10104++(1012+1011+10+1).1013+(1012+1011+10+1).1=(1012+1011+..10+1)(10130+10117+1013+1)(a)Hencethenumberiscomposite.(b)Bothfactorsaregeometricseries.1012+1011+1010+10+1:commonratio101.10130+10117+10104++1013+1:commonratio1013
Commented by Tinkutara last updated on 05/Dec/17
Thank you Sir!  There is one more answer:  N=(1+10^(11) +10^(22) +...+10^(132) )(1+10+  10^2 +...+10^(10) )
ThankyouSir!Thereisonemoreanswer:N=(1+1011+1022++10132)(1+10+102++1010)

Leave a Reply

Your email address will not be published. Required fields are marked *