Menu Close

show-that-a-r-1-n-r-3-n-C-r-n-2-n-3-2-n-3-b-n-C-0-n-C-1-n-C-1-n-C-2-n-C-n-1-n-C-n-2n-n-1-n-1-




Question Number 54647 by gunawan last updated on 08/Feb/19
show that  a. Σ_(r=1) ^(n)  r^3 ._n C_r =n^2 (n+3).2^(n−3)   b. _n C_0 ._n C_1 +_n C_1 ._n C_2 +...+_n C_(n−1) ._n C_n =(((2n)!)/((n−1)!.(n+1)!))
showthata.Σnr=1r3.nCr=n2(n+3).2n3b.nC0.nC1+nC1.nC2++nCn1.nCn=(2n)!(n1)!.(n+1)!
Commented by maxmathsup by imad last updated on 08/Feb/19
let s(x)=Σ_(k=0) ^n  C_n ^k  x^k   =(x+1)^n  ⇒ s^′ (x)=Σ_(k=1) ^n  k C_n ^k  x^(k−1)  =n(x+1)^(n−1)  ⇒  Σ_(k=1) ^n   k C_n ^k  x^k  =nx(x+1)^(n−1)  ⇒ Σ_(k=1) ^n  k^2  C_n ^k  x^(k−1) =n(x+1)^(n−1)  +nx(n−1)(x+1)^(n−2)  ⇒  Σ_(k=1) ^n  k^2  C_n ^k  x^k  =nx(x+1)^(n−1)  +n(n−1)x^2 (x+1)^(n−2)  ⇒  Σ_(k=1) ^n  k^3  C_n ^k x^(k−1)  =n(x+1)^(n−1 ) +n(n−1)x(x+1)^(n−2)   +2n(n−1)x(x+1)^(n−2)   +n(n−1)(n−2)x^2 (x+1)^(n−3)  ⇒  Σ_(k=1) ^n  k^3  C_n ^k  x^k  =nx(x+1)^(n−1)  +n(n−1)x^2 (x+1)^(n−2)   +2n(n−1)x^2 (x+1)^(n−2)   +n(n−1)(n−2)x^3 (x+1)^(n−3)    for x=1 we get  Σ_(k=1) ^n  k^3  C_n ^k  = n2^(n−1)  +n(n−1)2^(n−2)  +2n(n−1) 2^(n−2)  +n(n−1)(n−2)2^(n−3)   =n 2^(n−1)  +(n^2 −n +2n^2 −2n)2^(n−2)   +n(n−1)(n−2)2^(n−3)   =n 2^(n−1)  +(3n^2  −3n)2^(n−2)  +n(n−1)(n−2) 2^(n−3)   =n 2^(n−1)  +(6n^2  −6n)2^(n−3)  +( n^2 −n)(n−2)2^(n−3)   =n 2^(n−1)  +(6n^2 −6n +n^3 −3n^2  +2n)2^(n−3)   =n2^(n−1)  +(n^3 +3n^2  −4n)2^(n−3)   =4n 2^(n−3)  +(n^3 +3n^(2 ) −4n)2^(n−3)  =(n^3  +3n^2 )2^(n−3)   =n^2 (n+3)2^(n−3)   and the result is proved .
lets(x)=k=0nCnkxk=(x+1)ns(x)=k=1nkCnkxk1=n(x+1)n1k=1nkCnkxk=nx(x+1)n1k=1nk2Cnkxk1=n(x+1)n1+nx(n1)(x+1)n2k=1nk2Cnkxk=nx(x+1)n1+n(n1)x2(x+1)n2k=1nk3Cnkxk1=n(x+1)n1+n(n1)x(x+1)n2+2n(n1)x(x+1)n2+n(n1)(n2)x2(x+1)n3k=1nk3Cnkxk=nx(x+1)n1+n(n1)x2(x+1)n2+2n(n1)x2(x+1)n2+n(n1)(n2)x3(x+1)n3forx=1wegetk=1nk3Cnk=n2n1+n(n1)2n2+2n(n1)2n2+n(n1)(n2)2n3=n2n1+(n2n+2n22n)2n2+n(n1)(n2)2n3=n2n1+(3n23n)2n2+n(n1)(n2)2n3=n2n1+(6n26n)2n3+(n2n)(n2)2n3=n2n1+(6n26n+n33n2+2n)2n3=n2n1+(n3+3n24n)2n3=4n2n3+(n3+3n24n)2n3=(n3+3n2)2n3=n2(n+3)2n3andtheresultisproved.
Commented by gunawan last updated on 09/Feb/19
Wow Thank you very much Sir
WowThankyouverymuchSir
Commented by Abdo msup. last updated on 09/Feb/19
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *