Menu Close

Show-that-arcsin-x-pi-4-1-2-arcsin-2x-1-




Question Number 114812 by Ar Brandon last updated on 21/Sep/20
Show that   arcsin((√x))=(π/4)+(1/2)arcsin(2x−1)
Showthatarcsin(x)=π4+12arcsin(2x1)
Answered by mr W last updated on 21/Sep/20
say t=sin^(−1) (√x)  ⇒(√x)=sin t  ⇒x=sin^2  t  ⇒2x−1=2 sin^2  t−1=−cos 2t  =−sin ((π/2)−2t)=sin (2t−(π/2))  ⇒sin^(−1) (2x−1)=2t−(π/2)  ⇒(1/2)sin^(−1) (2x−1)=t−(π/4)  ⇒t=(π/4)+(1/2)sin^(−1) (2x−1)  ⇒sin^(−1) (√x)=(π/4)+(1/2)sin^(−1) (2x−1)
sayt=sin1xx=sintx=sin2t2x1=2sin2t1=cos2t=sin(π22t)=sin(2tπ2)sin1(2x1)=2tπ212sin1(2x1)=tπ4t=π4+12sin1(2x1)sin1x=π4+12sin1(2x1)
Commented by Ar Brandon last updated on 21/Sep/20
�� Thanks Mr W.
Answered by 1549442205PVT last updated on 21/Sep/20
Put arcsin(2x−1)=ϕ(ϕ∈[−(π/2);(π/2)]).  .We will prove thar   P= sin((π/4)+(ϕ/2))=(√x).Indeed,  sinϕ=2x−1(1),so P=sin((π/4)+(ϕ/2))=  sin(π/4)cos(ϕ/2)+cos(π/4)sin(ϕ/2)=  ((√2)/2)(cos(ϕ/2)+sin(ϕ/2))⇒(√2)P=cos(ϕ/2)+sin(ϕ/2)  ⇒2P^2 =cos^2 (ϕ/2)+sin^2 (ϕ/2)+2sin(ϕ/2)cos(ϕ/2)  ⇔2P^2 =1+sinϕ=1+(2x−1)=2x (by  (1))Since ϕ∈[((−π)/2);(π/2)],(π/4)+(ϕ/2)∈[0;π]  ⇒P=sin((π/4)+(ϕ/2))≥0.Therefore,  2P^2 =2x⇔P^2 =x⇔P=sin((π/4)+(ϕ/2))=(√x)  ⇒ arcsin((√x))=(π/4)+(ϕ/2).  Thus,arcsin((√x))=(π/4)+(1/2)arcsin(2x−1)  (due to  arcsin(2x−1)=ϕ)(Q.E.D
Putarcsin(2x1)=φ(φ[π2;π2])..WewillprovetharP=sin(π4+φ2)=x.Indeed,sinφ=2x1(1),soP=sin(π4+φ2)=sinπ4cosφ2+cosπ4sinφ2=22(cosφ2+sinφ2)2P=cosφ2+sinφ22P2=cos2φ2+sin2φ2+2sinφ2cosφ22P2=1+sinφ=1+(2x1)=2x(by(1))Sinceφ[π2;π2],π4+φ2[0;π]P=sin(π4+φ2)0.Therefore,2P2=2xP2=xP=sin(π4+φ2)=xarcsin(x)=π4+φ2.Thus,arcsin(x)=π4+12arcsin(2x1)(duetoarcsin(2x1)=φ)(Q.E.D
Answered by mathmax by abdo last updated on 22/Sep/20
let f(x)=arcsin((√x))−(1/2)arcsin(2x−1)−(π/4)  we have f^′ (x) =(1/(2(√x)(√(1−x))))−(1/2)×(2/( (√(1−(2x−1)^2 ))))  =(1/(2(√(x−x^2 ))))−(1/( (√(1−4x^2 +4x−1)))) =(1/(2(√(x−x^2 ))))−(1/(2(√(x−x^2 ))))=0 ⇒  f(x)=constante C  f(0) =C =−(1/2)arcsin(−1)−(π/4) =(π/4)−(π/4)=0 ⇒  f(x)=0 =arcsin((√x))−(1/2)arcsin(2x−1)−(π/4) ⇒  arcsin((√x)) =(π/4) +(1/2) arcsin(2x−1)
letf(x)=arcsin(x)12arcsin(2x1)π4wehavef(x)=12x1x12×21(2x1)2=12xx2114x2+4x1=12xx212xx2=0f(x)=constanteCf(0)=C=12arcsin(1)π4=π4π4=0f(x)=0=arcsin(x)12arcsin(2x1)π4arcsin(x)=π4+12arcsin(2x1)

Leave a Reply

Your email address will not be published. Required fields are marked *