Menu Close

Show-that-cos-6-x-sin-6-x-1-8-5-3cos-4x-By-using-the-formula-a-3-b-3-a-b-a-2-ab-b-2-




Question Number 94862 by mathocean1 last updated on 21/May/20
Show that   cos^6 x+sin^6 x=(1/8)(5+3cos(4x))  By using the formula:  a^3 +b^3 =(a+b)(a^2 −ab+b^2 )
Showthatcos6x+sin6x=18(5+3cos(4x))Byusingtheformula:a3+b3=(a+b)(a2ab+b2)
Commented by john santu last updated on 21/May/20
(cos^2 x)^3 +(sin^2 x)^3 =   1×(cos^4 x−cos^2 xsin^2 x+sin^4 x)  = {(sin^2 x+cos^2 x)^2 −3(cos xsin x)^2 }  = 1−3((1/2)sin 2x)^2   =1−(3/4)sin^2 2x   =1−(3/4){(1/2)−(1/2)cos 4x}  = 1−(3/8)+(3/4)cos 4x  =(5/8)+(3/4)cos 4x
(cos2x)3+(sin2x)3=1×(cos4xcos2xsin2x+sin4x)={(sin2x+cos2x)23(cosxsinx)2}=13(12sin2x)2=134sin22x=134{1212cos4x}=138+34cos4x=58+34cos4x
Commented by mathocean1 last updated on 21/May/20
Thank you sir!
Thankyousir!
Commented by niroj last updated on 21/May/20
����
Commented by i jagooll last updated on 21/May/20
��������

Leave a Reply

Your email address will not be published. Required fields are marked *