Menu Close

show-that-cos-7-1-2-2-3-4-6-




Question Number 46402 by scientist last updated on 25/Oct/18
show that cos 7(1/2) =(√2)+(√3)+(√4)+(√6)
$${show}\:{that}\:\mathrm{cos}\:\mathrm{7}\frac{\mathrm{1}}{\mathrm{2}}\:=\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}+\sqrt{\mathrm{6}} \\ $$
Commented by Meritguide1234 last updated on 25/Oct/18
it should be cot7(1/2)
$${it}\:{should}\:{be}\:{cot}\mathrm{7}\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by ajfour last updated on 25/Oct/18
cos 15°=(√((1+((√3)/2))/2))= ((√(2+(√3)))/2)  cos (((15)/2))^° = (√((1+((√(2+(√3)))/2))/2))                   = ((√(2+(√(2+(√3)))))/2) .
$$\mathrm{cos}\:\mathrm{15}°=\sqrt{\frac{\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{2}}}=\:\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\left(\frac{\mathrm{15}}{\mathrm{2}}\right)^{°} =\:\sqrt{\frac{\mathrm{1}+\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}{\mathrm{2}}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}}{\mathrm{2}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *