Menu Close

show-that-derivative-of-Sin-x-x-1-




Question Number 150180 by jlewis last updated on 10/Aug/21
show that derivative of Sin x/x =1
showthatderivativeofSinx/x=1
Answered by liberty last updated on 10/Aug/21
(d/dx)(((sin x)/x))=((xcos x−sin x)/x^2 )
ddx(sinxx)=xcosxsinxx2
Commented by liberty last updated on 10/Aug/21
 y′=lim_(h→0) ((((sin (x+h))/(x+h))−((sin x)/x))/h)  =lim_(h→0) ((xsin (x+h)−(x+h)sin x)/(xh(x+h)))  =lim_(h→0) ((x(sin xcos h+cos xsin h)−(xsin x+hsin x))/(xh(x+h)))  =lim_(h→0) ((xsin x(cos h−1)+xcos xsin h−hsin x)/(xh(x+h)))  =lim_(h→0) ((−2xsin x sin^2 h+xcos x sin h−hsin x)/(xh(x+h)))  =lim_(h→0) ((sin h(−2xsin x sin h+xcos x))/(xh(x+h)))−((sin x)/x^2 )  = ((xcos x)/x^2 )−((sin x)/x^2 )
y=limh0sin(x+h)x+hsinxxh=limh0xsin(x+h)(x+h)sinxxh(x+h)=limh0x(sinxcosh+cosxsinh)(xsinx+hsinx)xh(x+h)=limh0xsinx(cosh1)+xcosxsinhhsinxxh(x+h)=limh02xsinxsin2h+xcosxsinhhsinxxh(x+h)=limh0sinh(2xsinxsinh+xcosx)xh(x+h)sinxx2=xcosxx2sinxx2

Leave a Reply

Your email address will not be published. Required fields are marked *