Menu Close

Show-that-E-Z-0-and-Var-Z-1-where-Z-is-the-standard-normal-variable-




Question Number 192375 by Spillover last updated on 16/May/23
Show that E(Z)=0   and Var(Z)=1 where  Z is the standard normal variable
$${Show}\:{that}\:{E}\left({Z}\right)=\mathrm{0}\:\:\:{and}\:{Var}\left({Z}\right)=\mathrm{1}\:{where} \\ $$$${Z}\:{is}\:{the}\:{standard}\:{normal}\:{variable} \\ $$
Answered by mehdee42 last updated on 16/May/23
We know ∵   Z=((x−μ)/σ)     &  E(kx)=kE(x)  &  E(x+k)=E(x)+k  ; k∈R   & Var(kx)=k^2 Var(x)   &  Var(x+k)=Var(x)  ⇒E(Z)=E(((x−μ)/σ))=(1/σ)E(x−μ)=(1/σ)(E(x)−μ)=0 ✓  &  Var(Z)=Var(((x−μ)/σ))=(1/σ^2 )Var(x−μ)=(1/σ^2 )Var(x)=1 ✓
$${We}\:{know}\:\because\:\:\:{Z}=\frac{{x}−\mu}{\sigma}\:\:\: \\ $$$$\&\:\:{E}\left({kx}\right)={kE}\left({x}\right)\:\:\&\:\:{E}\left({x}+{k}\right)={E}\left({x}\right)+{k}\:\:;\:{k}\in\mathbb{R} \\ $$$$\:\&\:{Var}\left({kx}\right)={k}^{\mathrm{2}} {Var}\left({x}\right)\:\:\:\&\:\:{Var}\left({x}+{k}\right)={Var}\left({x}\right) \\ $$$$\Rightarrow{E}\left({Z}\right)={E}\left(\frac{{x}−\mu}{\sigma}\right)=\frac{\mathrm{1}}{\sigma}{E}\left({x}−\mu\right)=\frac{\mathrm{1}}{\sigma}\left({E}\left({x}\right)−\mu\right)=\mathrm{0}\:\checkmark \\ $$$$\&\:\:{Var}\left({Z}\right)={Var}\left(\frac{{x}−\mu}{\sigma}\right)=\frac{\mathrm{1}}{\sigma^{\mathrm{2}} }{Var}\left({x}−\mu\right)=\frac{\mathrm{1}}{\sigma^{\mathrm{2}} }{Var}\left({x}\right)=\mathrm{1}\:\checkmark \\ $$
Commented by Spillover last updated on 17/May/23
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *