Menu Close

Show-that-E-Z-0-and-Var-Z-1-where-Z-is-the-standard-normal-variable-




Question Number 192375 by Spillover last updated on 16/May/23
Show that E(Z)=0   and Var(Z)=1 where  Z is the standard normal variable
ShowthatE(Z)=0andVar(Z)=1whereZisthestandardnormalvariable
Answered by mehdee42 last updated on 16/May/23
We know ∵   Z=((x−μ)/σ)     &  E(kx)=kE(x)  &  E(x+k)=E(x)+k  ; k∈R   & Var(kx)=k^2 Var(x)   &  Var(x+k)=Var(x)  ⇒E(Z)=E(((x−μ)/σ))=(1/σ)E(x−μ)=(1/σ)(E(x)−μ)=0 ✓  &  Var(Z)=Var(((x−μ)/σ))=(1/σ^2 )Var(x−μ)=(1/σ^2 )Var(x)=1 ✓
WeknowZ=xμσ&E(kx)=kE(x)&E(x+k)=E(x)+k;kR&Var(kx)=k2Var(x)&Var(x+k)=Var(x)E(Z)=E(xμσ)=1σE(xμ)=1σ(E(x)μ)=0&Var(Z)=Var(xμσ)=1σ2Var(xμ)=1σ2Var(x)=1
Commented by Spillover last updated on 17/May/23
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *