Question Number 36703 by saikiran last updated on 04/Jun/18
$${show}\:{that}\:{f}\left({x}\right)=\mathrm{sin}\:{X}\:{is}\:{derivable}\:{at}\:{every}\:{a}\varepsilon{R} \\ $$
Commented by abdo mathsup 649 cc last updated on 04/Jun/18
$${we}\:{have}\:{for}\:{all}\:{x}\:\in{R} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}} \frac{{sin}\left({x}+{h}\right)−{sinx}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\frac{{sinx}\:{cosh}\:+{cosx}\:{sinh}\:−{sinx}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\:−{sinx}\left(\mathrm{1}−{cosh}\right)}{{h}}\:+\frac{{sinh}}{{h}}\:{cosx}\:{but} \\ $$$${we}\:{know}\:{that}\:{lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}−{cosh}}{{h}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}−{cosh}}{{h}}\:=\mathrm{0}\:{also}\:{lim}_{{h}\rightarrow\mathrm{0}} \frac{{sinh}}{{h}}\:=\mathrm{1}\:{so} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}\:=\:{cosx}\:\:\left(\in{R}\right)\:{so}\:{f}\:{is} \\ $$$${derivablabe}\:{at}\:{every}\:{point}\:{of}\:{R}\:. \\ $$
Commented by MJS last updated on 04/Jun/18
$$\mathrm{to}\:\mathrm{show} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}+{h}\right)−\mathrm{sin}\left({x}−{h}\right)}{\mathrm{2}{h}}=\mathrm{cos}\:{x} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{sin}==\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2i}};\:\mathrm{cos}\:{x}=\frac{\mathrm{e}^{\mathrm{i}{x}} +\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} }{\mathrm{4}{h}\mathrm{i}}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{d}}{{dh}}\left(\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} \right)}{\frac{{d}}{{dh}}\left(\mathrm{4}{h}\mathrm{i}\right)}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{i}}{\mathrm{4i}}\left(\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} +\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} \right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2e}^{\mathrm{i}{x}} +\mathrm{2e}^{−\mathrm{i}{x}} \right)=\frac{\mathrm{e}^{\mathrm{i}{x}} +\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}}=\mathrm{cos}\:{x} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18
$$\left.\mathrm{1}\right){meaning}\:{of}\:{derivative}\:{is}\:{the}\:{ability}\:{to}\:{draw} \\ $$$${tangent}\:{at}\:{a}\:{point}\:{on}\:{a}\:{curve}. \\ $$$$\left.\mathrm{2}\right){sinx}\:{is}\:{a}\:{continuous}\:{curve}\:{at}\:{every}\:{point} \\ $$$${and}\:{tangent}\:{can}\:{be}\:{drawn}\:{at}\:{everyoint}.{so}\:{it} \\ $$$${is}\:{derivable} \\ $$$$ \\ $$
Answered by MJS last updated on 04/Jun/18
$${f}\left({x}\right)=\mathrm{sin}\:{x} \\ $$$${f}'\left({x}\right)=\mathrm{cos}\:{x} \\ $$$$\mathrm{tangent}\:\mathrm{in}\:{P}=\begin{pmatrix}{{p}}\\{\mathrm{sin}\:{p}}\end{pmatrix}: \\ $$$${y}={x}\mathrm{cos}\:{p}+\mathrm{sin}\:{p}\:−{p}\mathrm{cos}\:{p} \\ $$$$\mathrm{exists}\:\mathrm{for}\:\mathrm{all}\:{p}\in\mathbb{R} \\ $$