Menu Close

show-that-f-x-sin-X-is-derivable-at-every-a-R-




Question Number 36703 by saikiran last updated on 04/Jun/18
show that f(x)=sin X is derivable at every aεR
showthatf(x)=sinXisderivableateveryaεR
Commented by abdo mathsup 649 cc last updated on 04/Jun/18
we have for all x ∈R  lim_(h→0)  ((f(x+h)−f(x))/h) =lim_(h→0) ((sin(x+h)−sinx)/h)  =lim_(h→0)  ((sinx cosh +cosx sinh −sinx)/h)  =lim_(h→0)  (( −sinx(1−cosh))/h) +((sinh)/h) cosx but  we know that lim_(h→0)  ((1−cosh)/h^2 ) =(1/2) ⇒  lim_(h→0)  ((1−cosh)/h) =0 also lim_(h→0) ((sinh)/h) =1 so  lim_(h→0)   ((f(x+h)−f(x))/h) = cosx  (∈R) so f is  derivablabe at every point of R .
wehaveforallxRlimh0f(x+h)f(x)h=limh0sin(x+h)sinxh=limh0sinxcosh+cosxsinhsinxh=limh0sinx(1cosh)h+sinhhcosxbutweknowthatlimh01coshh2=12limh01coshh=0alsolimh0sinhh=1solimh0f(x+h)f(x)h=cosx(R)sofisderivablabeateverypointofR.
Commented by MJS last updated on 04/Jun/18
to show  lim_(h→0) ((sin(x+h)−sin(x−h))/(2h))=cos x  we can use sin==((e^(ix) −e^(−ix) )/(2i)); cos x=((e^(ix) +e^(−ix) )/2)  lim_(h→0) ((e^(i(x+h)) −e^(−i(x+h)) −e^(i(x−h)) +e^(−i(x−h)) )/(4hi))=  =lim_(h→0) (((d/dh)(e^(i(x+h)) −e^(−i(x+h)) −e^(i(x−h)) +e^(−i(x−h)) ))/((d/dh)(4hi)))=  =lim_(h→0) (i/(4i))(e^(i(x+h)) +e^(−i(x+h)) +e^(i(x−h)) +e^(−i(x−h)) )=  =(1/4)(2e^(ix) +2e^(−ix) )=((e^(ix) +e^(−ix) )/2)=cos x
toshowlimh0sin(x+h)sin(xh)2h=cosxwecanusesin==eixeix2i;cosx=eix+eix2limh0ei(x+h)ei(x+h)ei(xh)+ei(xh)4hi==limh0ddh(ei(x+h)ei(x+h)ei(xh)+ei(xh))ddh(4hi)==limh0i4i(ei(x+h)+ei(x+h)+ei(xh)+ei(xh))==14(2eix+2eix)=eix+eix2=cosx
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18
1)meaning of derivative is the ability to draw  tangent at a point on a curve.  2)sinx is a continuous curve at every point  and tangent can be drawn at everyoint.so it  is derivable
1)meaningofderivativeistheabilitytodrawtangentatapointonacurve.2)sinxisacontinuouscurveateverypointandtangentcanbedrawnateveryoint.soitisderivable
Answered by MJS last updated on 04/Jun/18
f(x)=sin x  f′(x)=cos x  tangent in P= ((p),((sin p)) ):  y=xcos p+sin p −pcos p  exists for all p∈R
f(x)=sinxf(x)=cosxtangentinP=(psinp):y=xcosp+sinppcospexistsforallpR

Leave a Reply

Your email address will not be published. Required fields are marked *