Menu Close

Show-that-for-all-n-N-0-7-2n-1-1-is-an-integer-multiple-of-8-




Question Number 25173 by NECx last updated on 05/Dec/17
Show that for all nεN−{0}   7^(2n+1) +1 is an integer  multiple of  8.
ShowthatforallnϵN{0}72n+1+1isanintegermultipleof8.
Answered by ajfour last updated on 05/Dec/17
7^(2n+1) +1=(8−1)^(2n+1) +1  =8^(2n+1) −^(2n+1) C_1 (8)^(2n) +...+^(2n+1) C_(2n) (8)  =8m  .
72n+1+1=(81)2n+1+1=82n+12n+1C1(8)2n++2n+1C2n(8)=8m.
Commented by NECx last updated on 06/Dec/17
please can it be proven by P.M.I  i would like to see that used.    Thanks.
pleasecanitbeprovenbyP.M.Iiwouldliketoseethatused.Thanks.
Commented by jota+ last updated on 06/Dec/17
7^(2n+1) +1=8×  7^3 +1=344=8×  7^(2k+1) +1=8×     hipotesis  7^2 (7^(2k+1) +1)=7^2 (8×)     7^(2(k+1)+1) +48+1=8×  7^(2(k+1)+1) +1=8×−48=8×
72n+1+1=8×73+1=344=8×72k+1+1=8×hipotesis72(72k+1+1)=72(8×)72(k+1)+1+48+1=8×72(k+1)+1+1=8×48=8×

Leave a Reply

Your email address will not be published. Required fields are marked *