Menu Close

Show-that-for-n-N-r-0-n-P-r-n-n-e-where-x-denotes-the-greatest-integer-x-and-P-r-n-n-n-r-




Question Number 55099 by Joel578 last updated on 17/Feb/19
Show that for n ∈ N,  Σ_(r=0) ^n  P_r ^n  = ⌊n! e⌋  where ⌊x⌋ denotes the greatest integer ≤ x  and P_r ^n  = ((n!)/((n − r)!))
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:{n}\:\in\:\mathbb{N}, \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{P}_{{r}} ^{{n}} \:=\:\lfloor{n}!\:{e}\rfloor \\ $$$$\mathrm{where}\:\lfloor{x}\rfloor\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\leqslant\:{x} \\ $$$$\mathrm{and}\:{P}_{{r}} ^{{n}} \:=\:\frac{{n}!}{\left({n}\:−\:{r}\right)!} \\ $$
Answered by tm888 last updated on 18/Feb/19
Commented by Learner last updated on 18/Feb/19
please how can i post image as question/answer
$${please}\:{how}\:{can}\:{i}\:{post}\:{image}\:{as}\:{question}/{answer} \\ $$
Commented by Joel578 last updated on 22/Feb/19
Commented by Joel578 last updated on 22/Feb/19
there is an option ′more′ in top−right corner
$${there}\:{is}\:{an}\:{option}\:'{more}'\:{in}\:{top}−{right}\:{corner} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *