Menu Close

show-that-If-a-2-b-2-c-2-are-in-A-P-the-cotA-cotB-cotC-are-also-in-A-P-




Question Number 46569 by scientist last updated on 28/Oct/18
show that  If a^2 ,b^2 ,c^(2 )  are in A.P  the cotA,cotB,cotC are  also in A.P
showthatIfa2,b2,c2areinA.PthecotA,cotB,cotCarealsoinA.P
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Oct/18
((sinA)/a)=((sinB)/b)=((sinc)/c)=k(say)  cotA=((cosA)/(sinA))=(((b^2 +c^2 −a^2 )/(2bc))/(ak))=((b^2 +c^2 −a^2 )/(2abck))  cotB=((a^2 +c^2 −b^2 )/(2abck))  cotC=((a^2 +b^2 −c^2 )/(2abck))  to prove 2cotB=cotA+cotC  LHS  2×((a^2 +c^2 −b^2 )/(2abck))=2×((2b^2 −b^2 )/(2abck))=((2b^2 )/(2abck))=(b/(ack))  since 2b^2 =a^2 +c^2    a^2 ,b^2 ,c^2  are in A.P  now  cotA+cotC  ((b^2 +c^2 −a^2 )/(2abck))+((a^2 +b^2 −c^2 )/(2abck))  =((2b^2 )/(2abck))=(b/(ack))  hence LHS=RHS  so cotA , cotB,  cotC are inAP  proved
sinAa=sinBb=sincc=k(say)cotA=cosAsinA=b2+c2a22bcak=b2+c2a22abckcotB=a2+c2b22abckcotC=a2+b2c22abcktoprove2cotB=cotA+cotCLHS2×a2+c2b22abck=2×2b2b22abck=2b22abck=backsince2b2=a2+c2a2,b2,c2areinA.PnowcotA+cotCb2+c2a22abck+a2+b2c22abck=2b22abck=backhenceLHS=RHSsocotA,cotB,cotCareinAPproved

Leave a Reply

Your email address will not be published. Required fields are marked *