Menu Close

show-that-If-a-2-b-2-c-2-are-in-A-P-the-cotA-cotB-cotC-are-also-in-A-P-




Question Number 46569 by scientist last updated on 28/Oct/18
show that  If a^2 ,b^2 ,c^(2 )  are in A.P  the cotA,cotB,cotC are  also in A.P
$${show}\:{that}\:\:{If}\:{a}^{\mathrm{2}} ,{b}^{\mathrm{2}} ,{c}^{\mathrm{2}\:} \:{are}\:{in}\:{A}.{P}\:\:{the}\:{cotA},{cotB},{cotC}\:{are} \\ $$$${also}\:{in}\:{A}.{P} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Oct/18
((sinA)/a)=((sinB)/b)=((sinc)/c)=k(say)  cotA=((cosA)/(sinA))=(((b^2 +c^2 −a^2 )/(2bc))/(ak))=((b^2 +c^2 −a^2 )/(2abck))  cotB=((a^2 +c^2 −b^2 )/(2abck))  cotC=((a^2 +b^2 −c^2 )/(2abck))  to prove 2cotB=cotA+cotC  LHS  2×((a^2 +c^2 −b^2 )/(2abck))=2×((2b^2 −b^2 )/(2abck))=((2b^2 )/(2abck))=(b/(ack))  since 2b^2 =a^2 +c^2    a^2 ,b^2 ,c^2  are in A.P  now  cotA+cotC  ((b^2 +c^2 −a^2 )/(2abck))+((a^2 +b^2 −c^2 )/(2abck))  =((2b^2 )/(2abck))=(b/(ack))  hence LHS=RHS  so cotA , cotB,  cotC are inAP  proved
$$\frac{{sinA}}{{a}}=\frac{{sinB}}{{b}}=\frac{{sinc}}{{c}}={k}\left({say}\right) \\ $$$${cotA}=\frac{{cosA}}{{sinA}}=\frac{\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}}{{ak}}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{abck}} \\ $$$${cotB}=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{abck}} \\ $$$${cotC}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{abck}} \\ $$$${to}\:{prove}\:\mathrm{2}{cotB}={cotA}+{cotC} \\ $$$${LHS} \\ $$$$\mathrm{2}×\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{abck}}=\mathrm{2}×\frac{\mathrm{2}{b}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{abck}}=\frac{\mathrm{2}{b}^{\mathrm{2}} }{\mathrm{2}{abck}}=\frac{{b}}{{ack}} \\ $$$${since}\:\mathrm{2}{b}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} \:\:\:{a}^{\mathrm{2}} ,{b}^{\mathrm{2}} ,{c}^{\mathrm{2}} \:{are}\:{in}\:{A}.{P} \\ $$$${now} \\ $$$${cotA}+{cotC} \\ $$$$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{abck}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{abck}} \\ $$$$=\frac{\mathrm{2}{b}^{\mathrm{2}} }{\mathrm{2}{abck}}=\frac{{b}}{{ack}} \\ $$$${hence}\:{LHS}={RHS} \\ $$$${so}\:{cotA}\:,\:{cotB},\:\:{cotC}\:{are}\:{inAP}\:\:{proved} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *