Menu Close

Show-that-if-a-r-2-2rs-s-2-b-r-2-s-2-c-r-2-2rs-s-2-for-some-integers-r-s-then-a-2-b-2-c-2-are-three-square-in-AP-




Question Number 130085 by liberty last updated on 22/Jan/21
Show that if  { ((a=r^2 −2rs−s^2 )),((b=r^2 +s^2 )),((c=r^2 +2rs−s^2 )) :}   for some integers r,s then a^2 ,b^2 ,c^2   are three square in AP.
Showthatif{a=r22rss2b=r2+s2c=r2+2rss2forsomeintegersr,sthena2,b2,c2arethreesquareinAP.
Answered by benjo_mathlover last updated on 22/Jan/21
 a^2 ,b^2 ,c^2  in AP then 2b^2  = a^2 +c^2   (1)2b^2 =2(r^2 +s^2 )^2 =2(r^4 +2r^2 s^2 +s^4 )               = 2r^4 +4r^2 s^2 +2s^4   (2) a^2 +c^2 =(a+c)^2 −2ac      =(2r^2 −2s^2 )^2 −2(r^2 −s^2 −2rs)(r^2 −s^2 +2rs)   =4r^4 −8r^2 s^2 +4s^4 −2[ (r^2 −s^2 )^2 −4r^2 s^2  ]   = 4r^4 −8r^2 s^2 +4s^4 −2(r^4 −6r^2 s^2 +s^4 )   = 2r^4 +4r^2 s^2 +2s^2   It follows that a^2 ,b^2 ,c^2  in AP
a2,b2,c2inAPthen2b2=a2+c2(1)2b2=2(r2+s2)2=2(r4+2r2s2+s4)=2r4+4r2s2+2s4(2)a2+c2=(a+c)22ac=(2r22s2)22(r2s22rs)(r2s2+2rs)=4r48r2s2+4s42[(r2s2)24r2s2]=4r48r2s2+4s42(r46r2s2+s4)=2r4+4r2s2+2s2Itfollowsthata2,b2,c2inAP

Leave a Reply

Your email address will not be published. Required fields are marked *