Menu Close

show-that-if-A-R-m-and-B-R-n-are-compact-sets-then-A-B-a-b-R-m-n-a-A-and-b-B-




Question Number 82792 by M±th+et£s last updated on 24/Feb/20
show that if A⊂R^m  and B⊂R^n  are   compact sets.   then A×B={(a,b)∈R^(m+n) :a∈A and b∈B}
showthatifARmandBRnarecompactsets.thenA×B={(a,b)Rm+n:aAandbB}
Commented by M±th+et£s last updated on 24/Feb/20
is compact
iscompact
Answered by mind is power last updated on 24/Feb/20
since A is a subset of IR^n   dim IR^n =n  let N_(1 ) bee a norme i dont know english nam of   norme definitionn N(x)=0⇔x=0  N(x+y)≤N(x)+N(y)  N(kx)=∣k∣N(x)   let N_2  norme of  IR^m   N_3 (x)=N_1 (a)+N_2 (b) is norme over A×B  x=(a,b)∈A×B  since A is compact ∀U_n ∈A ∃ U_(ϕ(n)) →l∈A  ⇒N_1 (U_(ϕ(n)) −l)→0  since B is Compact  ∀V_n ∈B ∃l_2 ∈B and∃V_(δ(n)) such  N_2 (V_(δ(n)) −l_2 )→0  we check that  ∀(U_n ,V_n )∈A×B   (U_(ϕ(n)) ,V_(δ(n)) ) Cv  (l,l_2 )  N((U_(ϕ(n)) ,V_(δ(n)) );(l,l_2 ))=N_1 (U_(ϕ(n)) ,l)+N_2 (V_(δ(n)) ,l_2 )→0  ⇒∀(U_n ,V_n )∈A×B  has a cv subsequences ⇒A×B is compact set
sinceAisasubsetofIRndimIRn=nletN1beeanormeidontknowenglishnamofnormedefinitionnN(x)=0x=0N(x+y)N(x)+N(y)N(kx)=∣kN(x)letN2normeofIRmN3(x)=N1(a)+N2(b)isnormeoverA×Bx=(a,b)A×BsinceAiscompactUnAUφ(n)lAN1(Uφ(n)l)0sinceBisCompactVnBl2BandVδ(n)suchN2(Vδ(n)l2)0wecheckthat(Un,Vn)A×B(Uφ(n),Vδ(n))Cv(l,l2)N((Uφ(n),Vδ(n));(l,l2))=N1(Uφ(n),l)+N2(Vδ(n),l2)0(Un,Vn)A×BhasacvsubsequencesA×Biscompactset
Commented by M±th+et£s last updated on 24/Feb/20
nice solution sir thank you
nicesolutionsirthankyou
Commented by mind is power last updated on 24/Feb/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *