Menu Close

show-that-if-arg-z-1-z-2-z-1-z-2-pi-2-then-z-1-z-2-




Question Number 26374 by tawa tawa last updated on 24/Dec/17
show that  if    arg(((z_1  + z_2 )/(z_1  − z_2 ))) = (π/2)    then    ∣z_1 ∣ = ∣z_2 ∣
showthatifarg(z1+z2z1z2)=π2thenz1=z2
Answered by Rasheed.Sindhi last updated on 31/Dec/17
arg(((z_1  + z_2 )/(z_1  − z_2 ))) = (π/2)  tan^(-1) ((Im(((z_1  + z_2 )/(z_1  − z_2 ))))/(Re(((z_1  + z_2 )/(z_1  − z_2 )))))=(π/2)     ((Im(((z_1  + z_2 )/(z_1  − z_2 ))))/(Re(((z_1  + z_2 )/(z_1  − z_2 )))))=tan((π/2))=∞  ∴  Re(((z_1  + z_2 )/(z_1  − z_2 )))=0  Let z_1 =x_1 +iy_(1  ) & z_2 =x_2 +iy_2    Re((((x_1 +iy_(1  ) )+(x_2 +iy_2 ))/((x_1 +iy_(1  ) )−(x_2 +iy_2 ))))   Re((((x_1 +x_2 )+i(y_(1  ) +y_2 ))/((x_1 −x_2 )+i(y_(1  ) −y_2 ))))  Let x_1 +x_2 =u_1 ,y_(1  ) +y_2 =v_1        x_1 −x_2 =u_2  and y_(1  ) −y_2 =v_2    Re(((u_1 +iv_1 )/(u_2 +iv_2 )))=Re(((u_1 +iv_1 )/(u_2 +iv_2 ))×((u_2 −iv_2 )/(u_2 −iv_2 )))  =Re(((u_1 u_2 +v_1 v_2 +i(u_2 v_1 −u_1 v_2 ))/(u_2 ^2 +v_2 ^2 )))  =((u_1 u_2 +v_1 v_2 )/(u_2 ^2 +v_2 ^2 ))=0  u_1 u_2 +v_1 v_2 =0  (x_1 +x_2 )(x_1 −x_2 )+(y_(1  ) +y_2 )(y_(1  ) −y_2 )=0  (x_1 ^2 −x_2 ^2 )+(y_(1  ) ^2 −y_2 ^2 )=0   (x_1 ^2 +y_(1  ) ^2 )−(x_2 ^2 +y_2 ^2 )=0   (x_1 ^2 +y_(1  ) ^2 )=(x_2 ^2 +y_2 ^2 )     ∣z_1 ∣^2 =∣z_2 ∣^2      ∣z_1 ∣=∣z_2 ∣
arg(z1+z2z1z2)=π2tan1Im(z1+z2z1z2)Re(z1+z2z1z2)=π2Im(z1+z2z1z2)Re(z1+z2z1z2)=tan(π2)=Re(z1+z2z1z2)=0Letz1=x1+iy1&z2=x2+iy2Re((x1+iy1)+(x2+iy2)(x1+iy1)(x2+iy2))Re((x1+x2)+i(y1+y2)(x1x2)+i(y1y2))Letx1+x2=u1,y1+y2=v1x1x2=u2andy1y2=v2Re(u1+iv1u2+iv2)=Re(u1+iv1u2+iv2×u2iv2u2iv2)=Re(u1u2+v1v2+i(u2v1u1v2)u22+v22)=u1u2+v1v2u22+v22=0u1u2+v1v2=0(x1+x2)(x1x2)+(y1+y2)(y1y2)=0(x12x22)+(y12y22)=0(x12+y12)(x22+y22)=0(x12+y12)=(x22+y22)z12=∣z22z1∣=∣z2

Leave a Reply

Your email address will not be published. Required fields are marked *