Menu Close

show-that-if-f-x-a-x-show-that-f-x-a-x-ln-a-by-using-lim-h-0-f-x-h-f-x-h-




Question Number 82546 by M±th+et£s last updated on 22/Feb/20
show that   if f(x)=a^x     show that f ′(x)=a^x  ln(a)    by using lim_(h→0) ((f(x+h)−f(x))/h)
showthatiff(x)=axshowthatf(x)=axln(a)byusinglimh0f(x+h)f(x)h
Commented by niroj last updated on 22/Feb/20
   Solution:     f(x)=a^x      f(x+h)=a^(x+h)      f^( ′ ) (x)= _(h→0) ^(lim) ((f(x+h)−f(x))/h)     f^( ′) (x)= _(h→0) ^(lim)  ((a^(x+h) −a^x )/h)     = _(h→0) ^(lim)   ((a^x (a^h −1))/h)  =  a^x .   _(h→0) ^(lim)  ((a^h −1)/h)    =   a^x  log a     ∵   ( _(x→0) ^(lim)  ((a^x −1)/x)=log a)
Solution:f(x)=axf(x+h)=ax+hf(x)=limh0f(x+h)f(x)hf(x)=limh0ax+haxh=limh0ax(ah1)h=ax.limh0ah1h=axloga(limx0ax1x=loga)
Answered by TANMAY PANACEA last updated on 22/Feb/20
lim_(h→0)  ((a^(x+h) −a^x )/h)  a^x ×lim_(h→0)  ((a^h −1)/h)  [now a^h =e^(hlna) ]  a^x ×lim_(h→0) ((e^(hlna) −1)/(hlna))×lna  a^x ×1×lna  a^x lna
limh0ax+haxhax×limh0ah1h[nowah=ehlna]ax×limh0ehlna1hlna×lnaax×1×lnaaxlna

Leave a Reply

Your email address will not be published. Required fields are marked *