Question Number 21588 by dioph last updated on 28/Sep/17
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:{G}\:\mathrm{is}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{group}\:\mathrm{of} \\ $$$$\mathrm{even}\:\mathrm{order},\:\mathrm{then}\:{G}\:\mathrm{has}\:\mathrm{an}\:\mathrm{odd} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{order}\:\mathrm{2}. \\ $$
Commented by arcana last updated on 02/Dec/18
$$\mathrm{los}\:\mathrm{elementos}\:\mathrm{son}\:\mathrm{subgrupos}\:\mathrm{de}\:\mathrm{G}? \\ $$