Menu Close

show-that-if-p-prime-integer-divise-a-n-then-p-divise-also-a-




Question Number 127897 by mathocean1 last updated on 02/Jan/21
  show that if  p  (prime integer)divise   a^n   then p divise also a.
showthatifp(primeinteger)diviseanthenpdivisealsoa.
Commented by JDamian last updated on 03/Jan/21
this question seems bizarre for me because  if   a^n mod t = 0   ∀n>1  ⇔  a mod t  = 0
thisquestionseemsbizarreformebecauseifanmodt=0n>1amodt=0
Answered by floor(10²Eta[1]) last updated on 03/Jan/21
(★)   if n∣a and n∣b⇒n∣ax+by, x,y∈Z  n∣a⇒a=nk_1 , k_1 ∈Z  n∣b⇒b=nk_2 , k_2 ∈Z  ax=nk_1 x and by=nk_2 y  ⇒n∣ax+by=n(k_1 x+k_2 y)  (■)  if a≡b(mod n) and c≡d(mod n) so   ac≡bd(mod n)  a≡b(mod n)⇒n∣a−b  c≡d(mod n)⇒n∣c−d  by (★) we know that  n∣c(a−b)+b(c−d)⇒n∣ac−bd  ⇒ac≡bd(mod n)      Now suppose p∣a^n  but p∤a:  ⇒a≢0(mod p)  by (■) a^2 ≡b^2 (mod n) (a=c, b=d)  by induction a^k ≡b^k (mod n), k∈N  a≢0(mod p)⇒a^n ≢0^n =0(mod p)  ⇒p∤a^n , contradiction because we suppose  that p∣a^n . So if p∣a^n ⇒p∣a
()ifnaandnbnax+by,x,yZnaa=nk1,k1Znbb=nk2,k2Zax=nk1xandby=nk2ynax+by=n(k1x+k2y)(◼)ifab(modn)andcd(modn)soacbd(modn)ab(modn)nabcd(modn)ncdby()weknowthatnc(ab)+b(cd)nacbdacbd(modn)Nowsupposepanbutpa:a0(modp)by(◼)a2b2(modn)(a=c,b=d)byinductionakbk(modn),kNa0(modp)an0n=0(modp)pan,contradictionbecausewesupposethatpan.Soifpanpa

Leave a Reply

Your email address will not be published. Required fields are marked *