Question Number 107498 by Ar Brandon last updated on 11/Aug/20

Answered by 1549442205PVT last updated on 11/Aug/20
![Consider the equation of degree n: x^n −1=0(∗)⇔x^n =1⇔x=^n (√1) =(cos2kπ+isin2kπ)^(1/n) =cos((2kπ)/n)+isin((2kπ)/n) for k=1,2,...,n.Thus,the equation (∗) has n roots which each of them be a n−th root of unit .We denote the that roots to be δ_1 ,δ_2 ,...,δ_n .In addition,we see that α_k =cos((2kπ)/n)−isin((2kπ)/n)(k=1..n^(−) ) are also n different n−th roots of unit but α_i and δ_i are two conjugate number together means α_i δ_i =1and so we have δ_1 .δ_2 ....δ_n =α_1 .α_2 ....α_n =1.Then we have Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) ),(e^((2kπi)/n) =cos((2kπ)/n)+isin((2kπ)/n),(e^((−2kπi)/n) =cos((2kπ)/n)−isin((2kπ)/n)) =Π_(k=1) ^(n) (a−δ_k )(a−α_k )=Π_(k=1) ^(n) (a−δ_k )Π_(k=1) ^(n) (a−α_k ) =[a^n −a^(n−1) (Σ_(k=1) ^(n) δ_k )+a^(n−2) (Σ_(i≠j) δ_i δ_j )−...+aΣ_(i_1 ≠i_2 ≠...≠i_(n−1) ) (δ_i_1 δ_i_2 ...δ_i_(n−1) )−δ_1 δ_2 ..δ_n ] =(a^n −1)(becau se δ_k (k=1...n^(−) )be n roots of the equation:x^n −1=0,so all sums of form Σδ_k ,Σδ_i δ_j ,....Σ(δ_i_1 δ_i_2 ...δ_i_(n−1) ) equal to zero−Vieta′s theorem) Similarly,we have Π_(k=1) ^n (a−α_k )=(a^n −1) Consequently,Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) ) =(a^n −1)^2 (q.e.d)](https://www.tinkutara.com/question/Q107539.png)
Commented by Ar Brandon last updated on 11/Aug/20
Thanks so very much Sir ��
May I write you in case of any difficulties.��
Commented by 1549442205PVT last updated on 13/Aug/20
