Menu Close

Show-that-k-1-n-a-e-2ikpi-n-a-e-2ikpi-n-a-n-1-2-




Question Number 107498 by Ar Brandon last updated on 11/Aug/20
Show that   Π_(k=1) ^n (a−e^((2ikπ)/n) )(a−e^(−((2ikπ)/n)) )=(a^n −1)^2
Showthatnk=1(ae2ikπn)(ae2ikπn)=(an1)2
Answered by 1549442205PVT last updated on 11/Aug/20
Consider the equation of degree n:  x^n −1=0(∗)⇔x^n =1⇔x=^n (√1)   =(cos2kπ+isin2kπ)^(1/n) =cos((2kπ)/n)+isin((2kπ)/n)  for k=1,2,...,n.Thus,the equation (∗)  has n roots which each of them be a  n−th root of unit .We denote the that  roots to be δ_1 ,δ_2 ,...,δ_n .In addition,we  see that    α_k =cos((2kπ)/n)−isin((2kπ)/n)(k=1..n^(−) )  are also n different  n−th roots of unit  but α_i and δ_i are two conjugate number  together means α_i δ_i =1and so we have  δ_1 .δ_2 ....δ_n =α_1 .α_2 ....α_n =1.Then we have  Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) ),(e^((2kπi)/n) =cos((2kπ)/n)+isin((2kπ)/n),(e^((−2kπi)/n) =cos((2kπ)/n)−isin((2kπ)/n))  =Π_(k=1) ^(n) (a−δ_k )(a−α_k )=Π_(k=1) ^(n) (a−δ_k )Π_(k=1) ^(n) (a−α_k )  =[a^n −a^(n−1) (Σ_(k=1) ^(n) δ_k )+a^(n−2) (Σ_(i≠j) δ_i δ_j )−...+aΣ_(i_1 ≠i_2 ≠...≠i_(n−1) ) (δ_i_1  δ_i_2  ...δ_i_(n−1)  )−δ_1 δ_2 ..δ_n ]  =(a^n −1)(becau se δ_k (k=1...n^(−) )be n  roots of the equation:x^n −1=0,so all  sums of form Σδ_k ,Σδ_i δ_j ,....Σ(δ_i_1  δ_i_2  ...δ_i_(n−1)  )  equal to zero−Vieta′s theorem)  Similarly,we have  Π_(k=1) ^n (a−α_k )=(a^n −1)  Consequently,Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) )  =(a^n −1)^2 (q.e.d)
Considertheequationofdegreen:xn1=0()xn=1x=n1=(cos2kπ+isin2kπ)1n=cos2kπn+isin2kπnfork=1,2,,n.Thus,theequation()hasnrootswhicheachofthembeanthrootofunit.Wedenotethethatrootstobeδ1,δ2,,δn.Inaddition,weseethatαk=cos2kπnisin2kπn(k=1..n)arealsondifferentnthrootsofunitbutαiandδiaretwoconjugatenumbertogethermeansαiδi=1andsowehaveδ1.δ2.δn=α1.α2.αn=1.Thenwehavenk=1(ae2kπin)(ae2kπin),(e2kπin=cos2kπn+isin2kπn,(e2kπin=cos2kπnisin2kπn)=Πnk=1(aδk)(aαk)=Πnk=1(aδk)Πnk=1(aαk)=[anan1(Σnk=1δk)+an2(Σijδiδj)+aΣi1i2in1(δi1δi2δin1)δ1δ2..δn]=(an1)(becauseδk(k=1n)benrootsoftheequation:xn1=0,soallsumsofformΣδk,Σδiδj,.Σ(δi1δi2δin1)equaltozeroVietastheorem)Similarly,wehavenk=1(aαk)=(an1)Consequently,nk=1(ae2kπin)(ae2kπin)=(an1)2(q.e.d)
Commented by Ar Brandon last updated on 11/Aug/20
Thanks so very much Sir �� May I write you in case of any difficulties.��
Commented by 1549442205PVT last updated on 13/Aug/20
Thank you,but only  in public situation  ,Sir
Thankyou,butonlyinpublicsituation,Sir

Leave a Reply

Your email address will not be published. Required fields are marked *