Menu Close

show-that-lim-n-0-1-0-1-n-x-1-x-2-x-3-x-n-dx-1-dx-2-dx-n-2-




Question Number 84859 by M±th+et£s last updated on 16/Mar/20
show that  lim_(n→∞) ∫_0 ^1 ...∫_0 ^1 (n/(x_1 +x_2 +x_3 +...+x_n ))dx_1 dx_2 ...dx_n =2
$${show}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} …\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +…+{x}_{{n}} }{dx}_{\mathrm{1}} {dx}_{\mathrm{2}} …{dx}_{{n}} =\mathrm{2}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *