Menu Close

show-that-lim-x-0-ln-1-x-x-1-x-1-2-




Question Number 152247 by mathocean1 last updated on 26/Aug/21
show that lim_(x→0)  ((((ln(1+x))/x) −1)/x)=−(1/2)
$${show}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}\:−\mathrm{1}}{{x}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 26/Aug/21
ln (1+x)=x−(x^2 /2)+(x^3 /3)−(x^4 /4)+...  L=lim_(x→0) (((1−(x/2)+(x^2 /3)−(x^3 /4)+...)−1)/x)=−(1/2)
$$\mathrm{ln}\:\left(\mathrm{1}+{x}\right)={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+… \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{x}^{\mathrm{3}} }{\mathrm{4}}+…\right)−\mathrm{1}}{{x}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by peter frank last updated on 27/Aug/21
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by mathocean1 last updated on 26/Aug/21
Please sir can you explain or find   another way to calculate it? seriously  i don′t understand even the first line  : i have just finished my studies in  high scool...so...
$${Please}\:{sir}\:{can}\:{you}\:{explain}\:{or}\:{find}\: \\ $$$${another}\:{way}\:{to}\:{calculate}\:{it}?\:{seriously} \\ $$$${i}\:{don}'{t}\:{understand}\:{even}\:{the}\:{first}\:{line} \\ $$$$:\:{i}\:{have}\:{just}\:{finished}\:{my}\:{studies}\:{in} \\ $$$${high}\:{scool}…{so}… \\ $$
Commented by mr W last updated on 26/Aug/21
ln (1+x)=x−(x^2 /2)+(x^3 /3)−...  see taylor series...
$$\mathrm{ln}\:\left(\mathrm{1}+{x}\right)={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−… \\ $$$${see}\:{taylor}\:{series}… \\ $$
Commented by mr W last updated on 26/Aug/21
https://en.m.wikipedia.org/wiki/Taylor_series
Answered by Mokmokhi last updated on 26/Aug/21
lim((((ln (1+x))/x)−1)/x)=lim((ln (1+x)−x)/x^2 )  by lh rule  =lim(((1/(1+x))−1)/(2x))  again  =lim((−(1/((1+x)^2 )))/2)=−(1/2)
$${lim}\frac{\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}\right)}{{x}}−\mathrm{1}}{{x}}={lim}\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x}}{{x}^{\mathrm{2}} } \\ $$$${by}\:{lh}\:{rule} \\ $$$$={lim}\frac{\frac{\mathrm{1}}{\mathrm{1}+{x}}−\mathrm{1}}{\mathrm{2}{x}} \\ $$$${again} \\ $$$$={lim}\frac{−\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 26/Aug/21
using l′hopital rule:  lim_(x→0) ((ln (x+1)−x)/x^2 )  =lim_(x→0) (((1/(x+1))−1)/(2x))  =lim_(x→0) ((−1)/(2(x+1)))  =−(1/2)
$${using}\:{l}'{hopital}\:{rule}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:\left({x}+\mathrm{1}\right)−{x}}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{{x}+\mathrm{1}}−\mathrm{1}}{\mathrm{2}{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathocean1 last updated on 26/Aug/21
Thank you very much sirs for your  explanations!
$${Thank}\:{you}\:{very}\:{much}\:{sirs}\:{for}\:{your} \\ $$$${explanations}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *