Menu Close

show-that-lim-x-0-sinx-x-1-




Question Number 121050 by mathocean1 last updated on 05/Nov/20
show that   lim_(x→0 )  ((sinx)/x)=1
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sinx}}{\mathrm{x}}=\mathrm{1} \\ $$
Answered by 675480065 last updated on 05/Nov/20
as x→0, sinx→(x−(x^3 /(3!))+0(x^3 ))  ⇒lim_(x→0) ((sinx)/x)=lim_(x→0) ((x(1−(x^2 /6)))/x)=lim_(x→0) (1−(x^2 /6))=1
$$\mathrm{as}\:\mathrm{x}\rightarrow\mathrm{0},\:\mathrm{sinx}\rightarrow\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\mathrm{0}\left(\mathrm{x}^{\mathrm{3}} \right)\right) \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sinx}}{\mathrm{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{6}}\right)}{\mathrm{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{6}}\right)=\mathrm{1} \\ $$
Answered by physicstutes last updated on 05/Nov/20
 as x → 0 , sin x → x  ⇒ lim_(x→0)  (x/x) = 1 QED
$$\:\mathrm{as}\:{x}\:\rightarrow\:\mathrm{0}\:,\:\mathrm{sin}\:{x}\:\rightarrow\:{x} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}}\:=\:\mathrm{1}\:\mathrm{QED} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *