Question Number 126391 by mathocean1 last updated on 20/Dec/20
$$ \\ $$$${show}\:{that}\: \\ $$$${m}^{\mathrm{2}} +{m}\:{and}\:\:\mathrm{2}{m}+\mathrm{1}\:{are}\:{prime}\:{betwen} \\ $$$${them}. \\ $$
Answered by akornes last updated on 20/Dec/20
$${for}\:\mathrm{m}\:\epsilon\:\mathbb{Z}^{\ast} −\left\{−\mathrm{1}\right\} \\ $$$$ \\ $$$${pgcd}\left({m}^{\mathrm{2}} +{m}\:;\:\mathrm{2}{m}+\mathrm{1}\right)={pgcd}\left[{m}\left({m}+\mathrm{1}\right)\:;{m}+\left({m}+\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:={pgcd}\left[{m};\left({m}+\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={pgcd}\left({m};\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}\:{so}\:{m}^{\mathrm{2}} +{m}\:{and}\:\mathrm{2}{m}+\mathrm{1}\:{are}\:{prime} \\ $$$${betwen}\:{them} \\ $$
Commented by mathocean1 last updated on 20/Dec/20
$${thank}\:{you}\:{all} \\ $$
Answered by mnjuly1970 last updated on 20/Dec/20
$$\:\:\left({m}^{\mathrm{2}} +{m},\mathrm{2}{m}+\mathrm{1}\right)={d} \\ $$$$\:\:\:\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid{m}^{\mathrm{2}} +{m}} \:\Rightarrow\left\{_{{d}\mid\mathrm{2}{m}^{\mathrm{2}} +{m}} ^{{d}\mid\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{m}} \Rightarrow{d}\mid{m}\right.\right. \\ $$$$\:\:\:\:\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid{m}} \Rightarrow\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid\mathrm{2}{m}} \Rightarrow{d}\mid\mathrm{1}\overset{{d}\in\mathbb{N}} {\Rightarrow}\:{d}=\mathrm{1}\:\checkmark\:\:\:\:\right.\right. \\ $$
Answered by MJS_new last updated on 20/Dec/20
$${m}^{\mathrm{2}} +{m}={m}×\left({m}+\mathrm{1}\right)={a}×{b} \\ $$$$\mathrm{2}{m}+\mathrm{1}={m}+\left({m}+\mathrm{1}\right)={a}+{b} \\ $$$${c}\mid\left({a}×{b}\right)\:\Rightarrow\:{c}\mid{a}\:\vee\:{c}\mid{b} \\ $$$${c}\mid\left({a}+{b}\right)\:\wedge\:{c}\mid{a}\:\Leftrightarrow\:{c}\mid{b} \\ $$$$\Rightarrow\:\left({c}\mid\left({a}×{b}\right)\:\wedge\:{c}\mid\left({a}+{b}\right)\:\Leftrightarrow\:{c}\mid{a}\:\wedge\:{c}\mid{b}\right) \\ $$$$\mathrm{but}\:{c}\mid{m}\:\Leftrightarrow\:{c}\nmid\left({m}+\mathrm{1}\right)\:\forall{c}\neq\mathrm{1} \\ $$$$\Rightarrow\:{c}=\mathrm{1} \\ $$