Menu Close

Show-that-n-2-the-equation-x-n-x-n-admits-a-unique-solution-u-n-1-2-




Question Number 116167 by Ar Brandon last updated on 01/Oct/20
Show that ∀n≥2 the equation x^n =x+n  admits a unique solution u_n ∈(1,2]
Showthatn2theequationxn=x+nadmitsauniquesolutionun(1,2]
Answered by 1549442205PVT last updated on 01/Oct/20
Put f(x)=x^n −x−n.We have   f(1)f(2)=(−n)(2^n −2−n)=−n(2^n −2−n)≤0(1)  Indeed,put g(n)=2^n −n−2 then  g′(n)=2^n ln2−1>4ln2−1>0.Hence,  g(n) is an increase function on [2;∞)  ⇒g(n)>g(2)=0∀n≥2  Thus,(1) is true ∀ n≥2,so by   Rolle′s theorem we infer f(x) has a root   u_n ∈(1,2).Furthermore,f ′(x)=nx^(n−1) −1  >0∀x∈(1,+∞) so u_n is unique root  since f(x)is an icrease on [1,+∞)
Putf(x)=xnxn.Wehavef(1)f(2)=(n)(2n2n)=n(2n2n)0(1)Indeed,putg(n)=2nn2theng(n)=2nln21>4ln21>0.Hence,g(n)isanincreasefunctionon[2;)g(n)>g(2)=0n2Thus,(1)istruen2,sobyRollestheoremweinferf(x)hasarootun(1,2).Furthermore,f(x)=nxn11>0x(1,+)sounisuniquerootsincef(x)isanicreaseon[1,+)

Leave a Reply

Your email address will not be published. Required fields are marked *