Show-that-n-2-the-equation-x-n-x-n-admits-a-unique-solution-u-n-1-2- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 116167 by Ar Brandon last updated on 01/Oct/20 Showthat∀n⩾2theequationxn=x+nadmitsauniquesolutionun∈(1,2] Answered by 1549442205PVT last updated on 01/Oct/20 Putf(x)=xn−x−n.Wehavef(1)f(2)=(−n)(2n−2−n)=−n(2n−2−n)⩽0(1)Indeed,putg(n)=2n−n−2theng′(n)=2nln2−1>4ln2−1>0.Hence,g(n)isanincreasefunctionon[2;∞)⇒g(n)>g(2)=0∀n⩾2Thus,(1)istrue∀n⩾2,sobyRolle′stheoremweinferf(x)hasarootun∈(1,2).Furthermore,f′(x)=nxn−1−1>0∀x∈(1,+∞)sounisuniquerootsincef(x)isanicreaseon[1,+∞) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-50630Next Next post: please-help-integrate-x-sin-x-1-cos-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.