Menu Close

show-that-n-4-n-2-is-divisible-by-12-




Question Number 90661 by Cynosure last updated on 25/Apr/20
show that (n^4 −n^2 ) is divisible by 12
showthat(n4n2)isdivisibleby12
Answered by MJS last updated on 25/Apr/20
n^4 −n^2 =n^2 (n^2 −1)=n^2 (n−1)(n+1)=f(n)  (1) n=6k  f(n)=36k^2 (6k−1)(6k+1)=12×3k^2 (6k−1)(6k+1)  (2) n=6k+1  f(n)=(6k+1)^2 (6k)(6k+2)=12(6k+1)^2 k(3k+1)  (3) n=6k+2  f(n)=(6k+2)^2 (6k+1)(6k+3)=12(3k+1)^2 (6k+1)(2k+1)  (4) n=6k+3  f(n)=(6k+3)^2 (6k+2)(6k+4)=12(2k+1)(6k+3)(3k+1)(3k+2)  (5) n=6k+4  f(n)=(6k+4)^2 (6k+3)(6k+5)=12(3k+2)^2 (2k+1)(6k+5)  (6) n=6k+5  f(n)=(6k+5)^2 (6k+4)(6k+6)=12(6k+5)^2 (3k+2)(k+1)
n4n2=n2(n21)=n2(n1)(n+1)=f(n)(1)n=6kf(n)=36k2(6k1)(6k+1)=12×3k2(6k1)(6k+1)(2)n=6k+1f(n)=(6k+1)2(6k)(6k+2)=12(6k+1)2k(3k+1)(3)n=6k+2f(n)=(6k+2)2(6k+1)(6k+3)=12(3k+1)2(6k+1)(2k+1)(4)n=6k+3f(n)=(6k+3)2(6k+2)(6k+4)=12(2k+1)(6k+3)(3k+1)(3k+2)(5)n=6k+4f(n)=(6k+4)2(6k+3)(6k+5)=12(3k+2)2(2k+1)(6k+5)(6)n=6k+5f(n)=(6k+5)2(6k+4)(6k+6)=12(6k+5)2(3k+2)(k+1)
Answered by JDamian last updated on 25/Apr/20
m=n^4 −n^2 =n^2 (n^2 −1)=(n−1)n^2 (n+1)    m is the product of three sequential  natural numbers. Therefore:  1      m=3k  2.1 when n is even ⇒ m=4k  2.2 when n is odd ⇒(n−1) and (n+1) are          both even ⇒ m=4k  3      From above, m=12k
m=n4n2=n2(n21)=(n1)n2(n+1)mistheproductofthreesequentialnaturalnumbers.Therefore:1m=3k2.1whennisevenm=4k2.2whennisodd(n1)and(n+1)arebothevenm=4k3Fromabove,m=12k

Leave a Reply

Your email address will not be published. Required fields are marked *