Menu Close

Show-that-n-C-r-n-n-1-n-2-n-r-1-r-




Question Number 150554 by pete last updated on 13/Aug/21
Show that n_C_r  =((n(n−1)(n−2)...(n−r+1))/(r!))
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{n}_{\mathrm{C}_{\mathrm{r}} } =\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)…\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)}{\mathrm{r}!} \\ $$
Answered by Ar Brandon last updated on 13/Aug/21
((n(n−1)(n−2)...(n−r+1))/(r!))  =((n(n−1)...(n−r+1)(n−r)!)/((n−r)!r!))  =((n!)/((n−r)!r!))= ^n C_r
$$\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)…\left({n}−{r}+\mathrm{1}\right)}{{r}!} \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)…\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!}{\left({n}−{r}\right)!{r}!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!{r}!}=\overset{{n}} {\:}\mathrm{C}_{{r}} \\ $$
Commented by pete last updated on 15/Aug/21
Thank you sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *