Menu Close

show-that-sin-1-i-ln-2-1-pi-2-




Question Number 86476 by DuDono last updated on 28/Mar/20
show that  sin^(−1) α=−i ln (α±(√(α^2 −1)))−(π/2)
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \alpha=−{i}\:\mathrm{ln}\:\left(\alpha\pm\sqrt{\alpha^{\mathrm{2}} −\mathrm{1}}\right)−\frac{\pi}{\mathrm{2}} \\ $$
Commented by MJS last updated on 28/Mar/20
the path is this:  y=sin x  y=((e^(ix) −e^(−ix) )/(2i))  2iy=e^(ix) −(1/e^(ix) )  let e^(ix) =t ⇒ x=2nπ−i ln t  2iy=t−(1/t) ⇒ t=iy±(√(1−y^2 )) =i(y±(√(y^2 −1)))  now insert into x=2nπ−i ln t  ...
$$\mathrm{the}\:\mathrm{path}\:\mathrm{is}\:\mathrm{this}: \\ $$$${y}=\mathrm{sin}\:{x} \\ $$$${y}=\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}{i}} \\ $$$$\mathrm{2i}{y}=\mathrm{e}^{\mathrm{i}{x}} −\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{i}{x}} } \\ $$$$\mathrm{let}\:\mathrm{e}^{\mathrm{i}{x}} ={t}\:\Rightarrow\:{x}=\mathrm{2}{n}\pi−\mathrm{i}\:\mathrm{ln}\:{t} \\ $$$$\mathrm{2i}{y}={t}−\frac{\mathrm{1}}{{t}}\:\Rightarrow\:{t}=\mathrm{i}{y}\pm\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:=\mathrm{i}\left({y}\pm\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$$\mathrm{now}\:\mathrm{insert}\:\mathrm{into}\:{x}=\mathrm{2}{n}\pi−\mathrm{i}\:\mathrm{ln}\:{t} \\ $$$$… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *