Menu Close

show-that-sin-1-i-ln-2-1-pi-2-




Question Number 86476 by DuDono last updated on 28/Mar/20
show that  sin^(−1) α=−i ln (α±(√(α^2 −1)))−(π/2)
showthatsin1α=iln(α±α21)π2
Commented by MJS last updated on 28/Mar/20
the path is this:  y=sin x  y=((e^(ix) −e^(−ix) )/(2i))  2iy=e^(ix) −(1/e^(ix) )  let e^(ix) =t ⇒ x=2nπ−i ln t  2iy=t−(1/t) ⇒ t=iy±(√(1−y^2 )) =i(y±(√(y^2 −1)))  now insert into x=2nπ−i ln t  ...
thepathisthis:y=sinxy=eixeix2i2iy=eix1eixleteix=tx=2nπilnt2iy=t1tt=iy±1y2=i(y±y21)nowinsertintox=2nπilnt

Leave a Reply

Your email address will not be published. Required fields are marked *