Menu Close

show-that-sin-10-3-sec10-4-




Question Number 34066 by 5a3k last updated on 30/Apr/18
show that−  sin 10−(√3)sec10=4.
$$\mathrm{show}\:\mathrm{that}− \\ $$$$\mathrm{sin}\:\mathrm{10}−\sqrt{\mathrm{3}}\mathrm{sec10}=\mathrm{4}. \\ $$
Answered by math1967 last updated on 30/Apr/18
correct q. is (1/(sin10°)) −(√(3   )) sec10°  ((cos10°−(√3) sin10)/(sin10cos10  ))  ((2((1/2)cos10−(((√3) )/2)sin10))/(sin10cos10))  ((2(sin30cos10−cos30sin10))/(sin10cos10))  ((2sin(30−10))/(sin10cos10))=((4sin20)/(2sin10cos10))=((4sin20)/(sin20))  =4
$${correct}\:{q}.\:{is}\:\frac{\mathrm{1}}{{sin}\mathrm{10}°}\:−\sqrt{\mathrm{3}\:\:\:}\:{sec}\mathrm{10}° \\ $$$$\frac{{cos}\mathrm{10}°−\sqrt{\mathrm{3}}\:{sin}\mathrm{10}}{{sin}\mathrm{10}{cos}\mathrm{10}\:\:} \\ $$$$\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}{cos}\mathrm{10}−\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}{sin}\mathrm{10}\right)}{{sin}\mathrm{10}{cos}\mathrm{10}} \\ $$$$\frac{\mathrm{2}\left({sin}\mathrm{30}{cos}\mathrm{10}−{cos}\mathrm{30}{sin}\mathrm{10}\right)}{{sin}\mathrm{10}{cos}\mathrm{10}} \\ $$$$\frac{\mathrm{2}{sin}\left(\mathrm{30}−\mathrm{10}\right)}{{sin}\mathrm{10}{cos}\mathrm{10}}=\frac{\mathrm{4}{sin}\mathrm{20}}{\mathrm{2}{sin}\mathrm{10}{cos}\mathrm{10}}=\frac{\mathrm{4}{sin}\mathrm{20}}{{sin}\mathrm{20}} \\ $$$$=\mathrm{4} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *