Menu Close

show-that-sin-sin3-sin5-cos-cos3-cos5-tan3-




Question Number 52629 by scientist last updated on 10/Jan/19
show that ((sinα+sin3α+sin5α)/(cosα+cos3α+cos5α))= tan3α
$${show}\:{that}\:\frac{{sin}\alpha+{sin}\mathrm{3}\alpha+{sin}\mathrm{5}\alpha}{{cos}\alpha+{cos}\mathrm{3}\alpha+{cos}\mathrm{5}\alpha}=\:{tan}\mathrm{3}\alpha \\ $$
Answered by math1967 last updated on 10/Jan/19
((sin3α+2sin 3α.cos 2α)/(cos 3α+2cos 3αcos 2α))  =((sin 3α(1+cos 2α))/(cos 3α(1+cos 2α)))=tan3α
$$\frac{{sin}\mathrm{3}\alpha+\mathrm{2sin}\:\mathrm{3}\alpha.\mathrm{cos}\:\mathrm{2}\alpha}{\mathrm{cos}\:\mathrm{3}\alpha+\mathrm{2cos}\:\mathrm{3}\alpha\mathrm{cos}\:\mathrm{2}\alpha} \\ $$$$=\frac{\mathrm{sin}\:\mathrm{3}\alpha\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\alpha\right)}{\mathrm{cos}\:\mathrm{3}\alpha\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\alpha\right)}={tan}\mathrm{3}\alpha \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19
((sin5α+sinα+sin3α)/(cos5α+cosα+cos3α))  =((2sin3α.cos2α+sin3α)/(2cos3αcos2α+cos3α))  =((sin3α(2cos2α +1))/(cos3α(2cos2α +1)))  =tan3α
$$\frac{{sin}\mathrm{5}\alpha+{sin}\alpha+{sin}\mathrm{3}\alpha}{{cos}\mathrm{5}\alpha+{cos}\alpha+{cos}\mathrm{3}\alpha} \\ $$$$=\frac{\mathrm{2}{sin}\mathrm{3}\alpha.{cos}\mathrm{2}\alpha+{sin}\mathrm{3}\alpha}{\mathrm{2}{cos}\mathrm{3}\alpha{cos}\mathrm{2}\alpha+{cos}\mathrm{3}\alpha} \\ $$$$=\frac{{sin}\mathrm{3}\alpha\left(\mathrm{2}{cos}\mathrm{2}\alpha\:+\mathrm{1}\right)}{{cos}\mathrm{3}\alpha\left(\mathrm{2}{cos}\mathrm{2}\alpha\:+\mathrm{1}\right)} \\ $$$$={tan}\mathrm{3}\alpha \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *