Menu Close

Show-that-substituting-y-vx-x-y-dy-dx-x-dy-dx-y-to-a-separable-equation-for-v-and-x-and-its-solution-is-log-e-x-2-y-2-2tan-1-y-x-C-Mastermind-




Question Number 169346 by Mastermind last updated on 29/Apr/22
Show that substituting y=vx,  x+y(dy/dx)=x(dy/dx)−y to a separable  equation for v and x and its   solution is log_e (x^2 +y^2 )=2tan^(−1) ((y/x))  +C    Mastermind
$${Show}\:{that}\:{substituting}\:{y}={vx}, \\ $$$${x}+{y}\frac{{dy}}{{dx}}={x}\frac{{dy}}{{dx}}−{y}\:{to}\:{a}\:{separable} \\ $$$${equation}\:{for}\:{v}\:{and}\:{x}\:{and}\:{its}\: \\ $$$${solution}\:{is}\:{log}_{{e}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{2}{tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right) \\ $$$$+{C} \\ $$$$ \\ $$$${Mastermind} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *