Menu Close

Show-that-tan-1-1-3-sin-1-1-3-pi-4-




Question Number 155898 by Tawa11 last updated on 05/Oct/21
Show that     tan^(− 1) ((1/3))   +   sin^(− 1) ((1/3))   =   (π/4)
Showthattan1(13)+sin1(13)=π4
Answered by immortel last updated on 05/Oct/21
L=tan(tan^(−1) ((1/3))+sin^(−1) ((1/3)))=((tan(arctan((1/3)))+tan(arcsin(1/3)))/(1−tan(arctan((1/3)))tan(arcsin(1/3))))  or tan(arcsinx)=(x/( (√(1−x^2 ))))  donc  tan(arcsin(1/3))=((1/3)/( (√(1−(1/9)))))                                            =(1/( (√8)))=((√2)/4)  ainsi L=(((1/3)+((√2)/4))/(1−((√2)/(12))))                 =(((4+3(√2)))/(12))×((12)/(12−(√2)))               =(((4+3(√2))(12+(√2)))/((12−(√2))(12+(√2))))             =((48+4(√2)+36(√2)+6)/(144−2))            =((54+40(√2))/(142))=((27+20(√2))/(71))<1  donc  L≠1 ainsi    tan^(− 1) ((1/3))   +   sin^(− 1) ((1/3))   ≠  (π/4)       ..........l′immortel........
L=tan(tan1(13)+sin1(13))=tan(arctan(13))+tan(arcsin13)1tan(arctan(13))tan(arcsin13)ortan(arcsinx)=x1x2donctan(arcsin13)=13119=18=24ainsiL=13+241212=(4+32)12×12122=(4+32)(12+2)(122)(12+2)=48+42+362+61442=54+402142=27+20271<1doncL1ainsitan1(13)+sin1(13)π4.limmortel..
Commented by Tawa11 last updated on 05/Oct/21
God bless you sir.
Godblessyousir.
Answered by mr W last updated on 05/Oct/21
α=tan^(−1) (1/3) ⇒tan α=(1/3)  β=sin^(−1) (1/3) ⇒sin β=(1/3) ⇒tan β=(1/( 2(√2)))  tan (α+β)=((tan α+tan β)/(1−tan α tan β))  =(((1/3)+(1/( 2(√2))))/(1−(1/( 6(√2)))))=((3+2(√2))/( 6(√2)−1))=((27+20(√2))/(71))  ≈0.778≠1  ⇒α+β≠45°  in fact tan^(− 1) ((1/3))+sin^(− 1) ((1/3)) ≈38°
α=tan113tanα=13β=sin113sinβ=13tanβ=122tan(α+β)=tanα+tanβ1tanαtanβ=13+1221162=3+22621=27+202710.7781α+β45°infacttan1(13)+sin1(13)38°
Commented by Tawa11 last updated on 05/Oct/21
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *