Menu Close

Show-that-the-angle-between-two-unit-vectors-a-and-b-is-given-by-cos-a-b-Hence-given-that-a-i-cosA-j-sinA-and-b-i-cosB-j-sinB-prove-that-cos-A-B-cos




Question Number 58312 by pete last updated on 21/Apr/19
Show that the angle θ between two unit  vectors a_� ^�  and b_� ^�  is given by cosθ=a_� ^� •b_� ^� .  Hence, given that a_� ^� =i_� cosA+j_� sinA and  b_� ^� =i_� cosB−j_� sinB, prove that cos(A+B)=  cosAcosB−sinAsinB.
Showthattheangleθbetweentwounitvectorsa^andb^isgivenbycosθ=a^b^.Hence,giventhata^=icosA+jsinAandb^=icosBjsinB,provethatcos(A+B)=cosAcosBsinAsinB.
Commented by tanmay last updated on 21/Apr/19
Commented by tanmay last updated on 21/Apr/19
vector op^→ =a^∧ =icosA+jsinA  vector oQ^→ =b^∧ =icosB−jsinB  angle between op^→  and oQ^→  is<POQ=A+B  a^∧ .b^∧ =∣a^∧ ∣ ∣b^∧ ∣ cos(A+B)=1×1×cos(A+B)=cos(A+B)  a^∧ .b^∧   =(icosA+jsinA).(icosB−jsinB)  =cosAcosB−sinA sinB  hence equating value of a^∧ .b^∧   cos(A+B)=cosAcosB−sinB  formula...  if A^→ =ix_1 +jy_1 +kz_1   B^→ =ix_2 +jy_2 +kz_2   A^→ .B^→ =∣A^→ ∣ ∣B^→ ∣  cosθ  ∣A∣=(√(x_1 ^2 +y_1 ^2 +z_1 ^2 ))   and ∣B^→ ∣=(√(x_2 ^2 +y_2 ^2 +z_2 ^2 ))   A^→ .B^→ =x_1 x_2 +y_1 y_2 +z_1 z_2   cosθ=((A^→ .B^→ )/(∣A^→ ∣ ∣B^→ ∣))=((x_1 x_2 +y_1 y_2 +z_1 z_2 )/( (√(x_1 ^2 +y_1 ^2 +z_1 ^2 ))  ×(√(x_2 ^2 +y_2 ^2 +z_2 ^2 )) ))
vectorop=a=icosA+jsinAvectoroQ=b=icosBjsinBanglebetweenopandoQis<POQ=A+Ba.b=∣abcos(A+B)=1×1×cos(A+B)=cos(A+B)a.b=(icosA+jsinA).(icosBjsinB)=cosAcosBsinAsinBhenceequatingvalueofa.bcos(A+B)=cosAcosBsinBformulaifA=ix1+jy1+kz1B=ix2+jy2+kz2A.B=∣ABcosθA∣=x12+y12+z12andB∣=x22+y22+z22A.B=x1x2+y1y2+z1z2cosθ=A.BAB=x1x2+y1y2+z1z2x12+y12+z12×x22+y22+z22
Commented by pete last updated on 21/Apr/19
Thanks very much
Thanksverymuch
Commented by tanmay last updated on 21/Apr/19
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *