Menu Close

Show-that-the-boundary-value-problem-y-y-0-y-0-0-y-L-0-has-only-the-trival-solution-y-0-for-the-cases-0-and-lt-0-let-L-be-a-non-zero-real-number-




Question Number 184307 by Mastermind last updated on 05/Jan/23
Show that the boundary−value  problem y′′+λy=0           y(0)=0,  y(L)=0 has only the trival solution  y=0 for the cases λ=0 and λ<0.  let L be a non−zero real number.      ?
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{boundary}−\mathrm{value} \\ $$$$\mathrm{problem}\:\mathrm{y}''+\lambda\mathrm{y}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}, \\ $$$$\mathrm{y}\left(\mathrm{L}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{only}\:\mathrm{the}\:\mathrm{trival}\:\mathrm{solution} \\ $$$$\mathrm{y}=\mathrm{0}\:\mathrm{for}\:\mathrm{the}\:\mathrm{cases}\:\lambda=\mathrm{0}\:\mathrm{and}\:\lambda<\mathrm{0}. \\ $$$$\mathrm{let}\:\mathrm{L}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{zero}\:\mathrm{real}\:\mathrm{number}. \\ $$$$ \\ $$$$ \\ $$$$? \\ $$
Answered by FelipeLz last updated on 05/Jan/23
y′′+λy = 0  y = e^r  → r^2 e^r +λe^r  = 0  r^2  = −λ     λ = 0 → r = 0 ∴ y(x) = c   y(0) = 0 = c  y(x) = 0     λ < 0 → r = ±(√(−λ)) ∴ y(x) = c_1 e^((√(−λ))x) +c_2 e^(−(√(−λ))x)   y(0) = 0 → c_1 +c_2  = 0 ∴ y(x) = c(e^((√(−λ))x) −e^(−(√(−λ))x) )  y(L) = 0 → c(e^((√(−λ))L) −e^(−(√(−λ))L) ) = 0   L ≠ 0 → e^((√(−λ))L) −e^(−(√(−λ))L)  ≠ 0 ∴ c = 0  y(x) = 0
$${y}''+\lambda{y}\:=\:\mathrm{0} \\ $$$${y}\:=\:{e}^{{r}} \:\rightarrow\:{r}^{\mathrm{2}} {e}^{{r}} +\lambda{e}^{{r}} \:=\:\mathrm{0} \\ $$$${r}^{\mathrm{2}} \:=\:−\lambda \\ $$$$\: \\ $$$$\lambda\:=\:\mathrm{0}\:\rightarrow\:{r}\:=\:\mathrm{0}\:\therefore\:{y}\left({x}\right)\:=\:{c}\: \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:=\:{c} \\ $$$${y}\left({x}\right)\:=\:\mathrm{0} \\ $$$$\: \\ $$$$\lambda\:<\:\mathrm{0}\:\rightarrow\:{r}\:=\:\pm\sqrt{−\lambda}\:\therefore\:{y}\left({x}\right)\:=\:{c}_{\mathrm{1}} {e}^{\sqrt{−\lambda}{x}} +{c}_{\mathrm{2}} {e}^{−\sqrt{−\lambda}{x}} \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:\rightarrow\:{c}_{\mathrm{1}} +{c}_{\mathrm{2}} \:=\:\mathrm{0}\:\therefore\:{y}\left({x}\right)\:=\:{c}\left({e}^{\sqrt{−\lambda}{x}} −{e}^{−\sqrt{−\lambda}{x}} \right) \\ $$$${y}\left({L}\right)\:=\:\mathrm{0}\:\rightarrow\:{c}\left({e}^{\sqrt{−\lambda}{L}} −{e}^{−\sqrt{−\lambda}{L}} \right)\:=\:\mathrm{0}\: \\ $$$${L}\:\neq\:\mathrm{0}\:\rightarrow\:{e}^{\sqrt{−\lambda}{L}} −{e}^{−\sqrt{−\lambda}{L}} \:\neq\:\mathrm{0}\:\therefore\:{c}\:=\:\mathrm{0} \\ $$$${y}\left({x}\right)\:=\:\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *