Menu Close

show-that-the-close-form-of-k-0-i-0-1-k-i-k-1-k-2i-2-1-8-ln2-




Question Number 111622 by mathdave last updated on 04/Sep/20
show that the close form of   Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(k+i) )/((k+1)(k+2i+2)))])=(1/8)ln2
showthatthecloseformofk=0(i=0[(1)k+i(k+1)(k+2i+2)])=18ln2
Answered by mathdave last updated on 04/Sep/20
solution  I=Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(i+k) )/(2i+1))((1/(k+1))−(1/(k+2i+2)))])  I=Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(i+k) )/((2i+1)(k+1)))−(((−1)^(i+k) )/((2i+1)(k+2i+2)))])  I=(Σ_(k=0) ^∞ (((−1)^k )/(k+1)))(Σ_(i=0) ^∞ (((−1)^i )/(2i+1)))−Σ_(k=0) ^∞ Σ_(i=0) ^∞ (((−1)^(i+k) )/((2i+1)(k+2i+2)))  I=(Σ_(k=0) ^∞ (−1)^k ∫_0 ^1 y^k dy)(Σ_(i=0) ^∞ (−1)^i ∫_0 ^1 m^(2i) dm)−(Σ_(k=0) ^∞ (−1)^k ∫_0 ^1 u^((k+2i+1)) du)Σ_(i=0) ^∞ (((−1)^i )/(2i+1))  I=(∫_0 ^1 (dy/(1+y)))(∫_0 ^1 (dm/(1+m^2 )))−(Σ_(k=0) ^∞ (−1)^k ∫_0 ^1 u^k du)Σ_(i=0) ^∞ (((−1)^i u^(2i+1) )/(2i+1))  but tan^(−1) (u)=Σ_(i=0) ^∞ (((−1)^i u^(2i+1) )/(2i+1))  I=(ln2)(tan^(−1)  (m))_0 ^1 −(∫_0 ^1 (du/(1+u)))tan^(−1) (u)  I=(ln2)((π/4))−(∫_0 ^1 ((tan^(−1) u)/(1+u))du)  using IBP  I=(π/4)ln2−[(ln(1+u)tan^(−1) u]_0 ^1 +(∫_0 ^1 ((ln(1+u))/(1+u^2 ))du)  I=(π/4)ln2−(π/4)ln2+∫_0 ^1 ((ln(1+u))/(1+u^2 ))du  I=∫_0 ^1 ((ln(1+u))/(1+u^2 ))du  (let  u=tanx  and du=(1+tan^2 x)dx  I=∫_0 ^(π/4) ln(1+tanx)dx.........(1)  using the property  ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  I=∫_0 ^(π/4) ln[1+tan((π/4)−x)]dx=  I=∫_0 ^(π/4) ln(1+((1−tanx)/(1+tanx)))dx  I=∫_0 ^(π/4) (ln2−ln(1+tanx))dx........(2)  adding (1)  and (2)  2I=∫_0 ^(π/4) (ln(1+tanx)+ln2−ln(1+tanx))dx  I=(1/2)∫_0 ^(π/4) ln2dx=(1/2)ln2∫_0 ^(π/4) dx=((ln2)/2)[x]_0 ^(π/4)   I=(1/2)ln2×(π/4)=(1/8)ln2  ∵Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(i+k) )/((k+1)(k+2i+2)))])=(1/8)ln2       Q.E.D  by mathdave(04/09/2020)
solutionI=k=0(i=0[(1)i+k2i+1(1k+11k+2i+2)])I=k=0(i=0[(1)i+k(2i+1)(k+1)(1)i+k(2i+1)(k+2i+2)])I=(k=0(1)kk+1)(i=0(1)i2i+1)k=0i=0(1)i+k(2i+1)(k+2i+2)I=(k=0(1)k01ykdy)(i=0(1)i01m2idm)(k=0(1)k01u(k+2i+1)du)i=0(1)i2i+1I=(01dy1+y)(01dm1+m2)(k=0(1)k01ukdu)i=0(1)iu2i+12i+1buttan1(u)=i=0(1)iu2i+12i+1I=(ln2)(tan1(m))01(01du1+u)tan1(u)I=(ln2)(π4)(01tan1u1+udu)usingIBPI=π4ln2[(ln(1+u)tan1u]01+(01ln(1+u)1+u2du)I=π4ln2π4ln2+01ln(1+u)1+u2duI=01ln(1+u)1+u2du(letu=tanxanddu=(1+tan2x)dxI=0π4ln(1+tanx)dx(1)usingthepropertyabf(x)dx=abf(a+bx)dxI=0π4ln[1+tan(π4x)]dx=I=0π4ln(1+1tanx1+tanx)dxI=0π4(ln2ln(1+tanx))dx..(2)adding(1)and(2)2I=0π4(ln(1+tanx)+ln2ln(1+tanx))dxI=120π4ln2dx=12ln20π4dx=ln22[x]0π4I=12ln2×π4=18ln2k=0(i=0[(1)i+k(k+1)(k+2i+2)])=18ln2Q.E.Dbymathdave(04/09/2020)
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *