Menu Close

show-that-the-curve-with-parametric-equcations-x-t-2-3t-5-y-t-3-t-2-10t-9-intersect-at-the-point-3-1-




Question Number 23181 by lizan 123 last updated on 27/Oct/17
show that the curve with parametric   equcations  x=t^2  −3t+5,  y=t^3  +t^2  −10t+9 intersect at the   point (3,1).
$${show}\:{that}\:{the}\:{curve}\:{with}\:{parametric}\: \\ $$$${equcations}\:\:{x}={t}^{\mathrm{2}} \:−\mathrm{3}{t}+\mathrm{5}, \\ $$$${y}={t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9}\:{intersect}\:{at}\:{the}\: \\ $$$${point}\:\left(\mathrm{3},\mathrm{1}\right). \\ $$
Commented by mrW1 last updated on 27/Oct/17
x=t^2  −3t+5=3  ⇒t^2  −3t=−2  ⇒t^2  =3t−2  ⇒t^3  =3t^2 −2t    y=t^3  +t^2  −10t+9  =3t^2 −2t +t^2  −10t+9  =4t^2 −12t +9  =4(t^2 −3t)+9  =4×(−2)+9  =1    ⇒the curve passes through the point (3,1)
$${x}={t}^{\mathrm{2}} \:−\mathrm{3}{t}+\mathrm{5}=\mathrm{3} \\ $$$$\Rightarrow{t}^{\mathrm{2}} \:−\mathrm{3}{t}=−\mathrm{2} \\ $$$$\Rightarrow{t}^{\mathrm{2}} \:=\mathrm{3}{t}−\mathrm{2} \\ $$$$\Rightarrow{t}^{\mathrm{3}} \:=\mathrm{3}{t}^{\mathrm{2}} −\mathrm{2t} \\ $$$$ \\ $$$${y}={t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9} \\ $$$$=\mathrm{3t}^{\mathrm{2}} −\mathrm{2t}\:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9} \\ $$$$=\mathrm{4t}^{\mathrm{2}} −\mathrm{12t}\:+\mathrm{9} \\ $$$$=\mathrm{4}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{3t}\right)+\mathrm{9} \\ $$$$=\mathrm{4}×\left(−\mathrm{2}\right)+\mathrm{9} \\ $$$$=\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\mathrm{the}\:\mathrm{curve}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{3},\mathrm{1}\right) \\ $$
Commented by ajfour last updated on 27/Oct/17
It has to intersect itself at (3,1) .  and not just pass through the  point.
$${It}\:{has}\:{to}\:{intersect}\:{itself}\:{at}\:\left(\mathrm{3},\mathrm{1}\right)\:. \\ $$$${and}\:{not}\:{just}\:{pass}\:{through}\:{the} \\ $$$${point}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *