Menu Close

Show-that-the-differential-equation-y-4y-4y-0-is-satisfied-when-y-xe-2x-Mastermind-




Question Number 169364 by Mastermind last updated on 29/Apr/22
Show that the differential equation  y′′ −4y′+4y=0 is satisfied when  y=xe^(2x)     Mastermind
$${Show}\:{that}\:{the}\:{differential}\:{equation} \\ $$$${y}''\:−\mathrm{4}{y}'+\mathrm{4}{y}=\mathrm{0}\:{is}\:{satisfied}\:{when} \\ $$$${y}={xe}^{\mathrm{2}{x}} \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by Mathspace last updated on 29/Apr/22
(ce)→r^2 −4r+1=0 ⇒(r−2)^2 =0 ⇒r=2  and 2 is double root ⇒y=(λx+α)e^(2x)
$$\left({ce}\right)\rightarrow{r}^{\mathrm{2}} −\mathrm{4}{r}+\mathrm{1}=\mathrm{0}\:\Rightarrow\left({r}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow{r}=\mathrm{2} \\ $$$${and}\:\mathrm{2}\:{is}\:{double}\:{root}\:\Rightarrow{y}=\left(\lambda{x}+\alpha\right){e}^{\mathrm{2}{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *