Menu Close

Show-that-the-differetial-equation-is-a-Sturm-Louville-equation-x-1-y-1-1-4-x-3-y-0-y-1-0-y-t-0-Solve-the-equation-to-determine-the-eigenvalue-and-the-corresponding-eigen-functions




Question Number 83619 by Jidda28 last updated on 04/Mar/20
Show that the differetial equation is a Sturm−Louville equation  (x^(−1) y^1 )^1 +(4+λ)x^(−3) y=0,  y(1)=0,y(ϱ^t )=0  Solve the equation to determine the eigenvalue and the corresponding eigen functions of the problem.  Show also that the set of eigen function forms and orthogonal and orthonormal set.    Thanks as usual.
$${Show}\:{that}\:{the}\:{differetial}\:{equation}\:{is}\:{a}\:{Sturm}−{Louville}\:{equation} \\ $$$$\left({x}^{−\mathrm{1}} {y}^{\mathrm{1}} \right)^{\mathrm{1}} +\left(\mathrm{4}+\lambda\right){x}^{−\mathrm{3}} {y}=\mathrm{0},\:\:{y}\left(\mathrm{1}\right)=\mathrm{0},{y}\left(\varrho^{{t}} \right)=\mathrm{0} \\ $$$${Solve}\:{the}\:{equation}\:{to}\:{determine}\:{the}\:{eigenvalue}\:{and}\:{the}\:{corresponding}\:{eigen}\:{functions}\:{of}\:{the}\:{problem}. \\ $$$${Show}\:{also}\:{that}\:{the}\:{set}\:{of}\:{eigen}\:{function}\:{forms}\:{and}\:{orthogonal}\:{and}\:{orthonormal}\:{set}. \\ $$$$ \\ $$$${Thanks}\:{as}\:{usual}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *