Menu Close

Show-that-the-equation-1-x-a-1-x-b-1-x-c-0-can-have-a-pair-of-equal-roots-if-a-b-c-




Question Number 20013 by Tinkutara last updated on 20/Aug/17
Show that the equation (1/(x − a)) + (1/(x − b))  + (1/(x − c)) = 0 can have a pair of equal  roots if a = b = c.
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\frac{\mathrm{1}}{{x}\:−\:{a}}\:+\:\frac{\mathrm{1}}{{x}\:−\:{b}} \\ $$$$+\:\frac{\mathrm{1}}{{x}\:−\:{c}}\:=\:\mathrm{0}\:\mathrm{can}\:\mathrm{have}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{equal} \\ $$$$\mathrm{roots}\:\mathrm{if}\:{a}\:=\:{b}\:=\:{c}. \\ $$
Commented by ajfour last updated on 20/Aug/17
how did u solve it , please let me  know.
$${how}\:{did}\:{u}\:{solve}\:{it}\:,\:{please}\:{let}\:{me} \\ $$$${know}. \\ $$
Commented by ajfour last updated on 20/Aug/17
if a=b=c=k  f(x)=(3/(x−k))  no roots !
$${if}\:{a}={b}={c}={k} \\ $$$${f}\left({x}\right)=\frac{\mathrm{3}}{{x}−{k}}\:\:{no}\:{roots}\:! \\ $$
Commented by ajfour last updated on 20/Aug/17
thanks.
$${thanks}. \\ $$
Commented by Tinkutara last updated on 20/Aug/17
(1/(x − a)) + (1/(x − b)) = (1/(c − x))  ((2x − a − b)/((x − a)(x − b))) = (1/(c − x))  A quadratic equation can be formed by  more simplification, and then we have  to put discriminant = 0 and then we  will get (a − b)^2  + (b − c)^2  + (c − a)^2  = 0  ⇒ a = b = c.
$$\frac{\mathrm{1}}{{x}\:−\:{a}}\:+\:\frac{\mathrm{1}}{{x}\:−\:{b}}\:=\:\frac{\mathrm{1}}{{c}\:−\:{x}} \\ $$$$\frac{\mathrm{2}{x}\:−\:{a}\:−\:{b}}{\left({x}\:−\:{a}\right)\left({x}\:−\:{b}\right)}\:=\:\frac{\mathrm{1}}{{c}\:−\:{x}} \\ $$$$\mathrm{A}\:\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{by} \\ $$$$\mathrm{more}\:\mathrm{simplification},\:\mathrm{and}\:\mathrm{then}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{to}\:\mathrm{put}\:\mathrm{discriminant}\:=\:\mathrm{0}\:\mathrm{and}\:\mathrm{then}\:\mathrm{we} \\ $$$$\mathrm{will}\:\mathrm{get}\:\left({a}\:−\:{b}\right)^{\mathrm{2}} \:+\:\left({b}\:−\:{c}\right)^{\mathrm{2}} \:+\:\left({c}\:−\:{a}\right)^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:{a}\:=\:{b}\:=\:{c}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *