Menu Close

Show-that-the-equation-sec-2-4xy-x-y-2-is-only-possible-when-x-y-




Question Number 37745 by kunal1234523 last updated on 17/Jun/18
Show that the equation sec^2 θ = ((4xy)/((x+y)^2 )) is   only possible when x = y
Showthattheequationsec2θ=4xy(x+y)2isonlypossiblewhenx=y
Answered by math1967 last updated on 17/Jun/18
x,y real ∴(x−y)^2 ≥0  (x+y)^2 −4xy≥0⇒(x+y)^2 ≥4xy  ⇒4xy≤(x+y)^2   ⇒((4xy)/((x+y)^2 ))≤1 but sec^2 θ≥1  now if x=y then ((4xy)/((x+y)^2 ))=1  ∴sec^2  θ=((4xy)/((x+y)^2 )) is possible whenx=y
x,yreal(xy)20(x+y)24xy0(x+y)24xy4xy(x+y)24xy(x+y)21butsec2θ1nowifx=ythen4xy(x+y)2=1sec2θ=4xy(x+y)2ispossiblewhenx=y

Leave a Reply

Your email address will not be published. Required fields are marked *