Menu Close

Show-that-the-function-f-x-e-x-is-of-Reimann-within-x-1-5-hence-calculate-1-5-e-x-dx-




Question Number 93941 by Ar Brandon last updated on 16/May/20
Show that the function f(x)=e^(x )  is of Reimann within  x∈[1;5] hence calculate ∫_1 ^5 e^x dx
Showthatthefunctionf(x)=exisofReimannwithinx[1;5]hencecalculate15exdx
Commented by mathmax by abdo last updated on 16/May/20
f continue we have  ∫_1 ^5  e^x  dx =lim_(n→+∞)    ((5−1)/n)Σ_(k=1) ^n  e^(1+((4k)/n))   =lim_(n→+∞) ((4e)/n) Σ_(k=0) ^(n−1)    (e^(4/n) )^k   =lim_(n→+∞)  ((4e)/n)×((1−(e^(4/n) )^n )/(1−e^(4/n) ))  =lim_(n→+∞)  ((4e)/n)×((1−e^4 )/(1−e^(4/n) ))   =lim_(n→+∞) 4e(1−e^4 )×(1/(n(1−e^(4/n) )))  we have e^(4/n)  ∼1+(4/n) ⇒1−e^(4/n)  ∼−(4/n) ⇒n(1−e^(4/n) ) ∼−4 ⇒  lim_(n→+∞)  (1/(n(1−e^(4/n) ))) =−4 ⇒∫_1 ^5 f(x)dx =−(1/4)×4e(1−e^4 )  =e^5 −e .
fcontinuewehave15exdx=limn+51nk=1ne1+4kn=limn+4enk=0n1(e4n)k=limn+4en×1(e4n)n1e4n=limn+4en×1e41e4n=limn+4e(1e4)×1n(1e4n)wehavee4n1+4n1e4n4nn(1e4n)4limn+1n(1e4n)=415f(x)dx=14×4e(1e4)=e5e.
Commented by Ar Brandon last updated on 16/May/20
Thanks ��

Leave a Reply

Your email address will not be published. Required fields are marked *