Menu Close

Show-that-the-function-x-x-3-is-of-Riemann-within-the-interval-1-2-then-calculate-1-2-x-2-dx-




Question Number 92799 by Ar Brandon last updated on 09/May/20
Show that the function x→x^3  is  of Riemann within the interval [−1,2]  then calculate ∫_(−1) ^2 x^2 dx
Showthatthefunctionxx3isofRiemannwithintheinterval[1,2]thencalculate12x2dx
Commented by mathmax by abdo last updated on 09/May/20
∫_(−1) ^2  x^2  dx =[(1/3)x^3 ]_(−1) ^2  =(1/3)(2^3 −(−1)^3 ) =(1/3)(8+1) =3  we know  ∫_a ^b f(x)dx =lim_(n→∞)   ((b−a)/n)Σ_(k=1) ^n  f(a+((k(b−a))/n)) ⇒  ∫_(−1) ^2  x^2  dx =_(x=t−1)   ∫_0 ^3 (t−1)^2  dt =∫_0 ^3 (t^2 −2t+1)dt  =∫_0 ^3  t^2  dt −2∫_0 ^3  t dt +3  ∫_0 ^3  t^2 dt =lim_(n→+∞)  (3/n)Σ_(k=1) ^n (((3k)/n))^2  =lim_(n→+∞) ((27)/n^3 )×((n(n+1)(2n+1))/6)  =lim_(n→+∞)   ((27)/6)×((2n^3 )/n^3 ) =9  ∫_0 ^3  tdt =lim_(n→+∞) (3/n)Σ_(k=1) ^n  ((3k)/n) =lim_(n→+∞) (9/n^2 )×((n(n+1))/2)  =(9/2) ⇒∫_(−1) ^2  x^2  dx =9−2×(9/2) +3 =3
12x2dx=[13x3]12=13(23(1)3)=13(8+1)=3weknowabf(x)dx=limnbank=1nf(a+k(ba)n)12x2dx=x=t103(t1)2dt=03(t22t+1)dt=03t2dt203tdt+303t2dt=limn+3nk=1n(3kn)2=limn+27n3×n(n+1)(2n+1)6=limn+276×2n3n3=903tdt=limn+3nk=1n3kn=limn+9n2×n(n+1)2=9212x2dx=92×92+3=3
Commented by Ar Brandon last updated on 10/May/20
thanks bro

Leave a Reply

Your email address will not be published. Required fields are marked *