Menu Close

Show-that-the-function-y-x-5-has-no-derivative-at-x-5-




Question Number 186445 by myint last updated on 04/Feb/23
Show  that  the  function  y =  ∣ x −5 ∣  has  no  derivative  at  x  = 5.
$$\mathrm{Show}\:\:\mathrm{that}\:\:\mathrm{the}\:\:\mathrm{function}\:\:\mathrm{y}\:=\:\:\mid\:\mathrm{x}\:−\mathrm{5}\:\mid\:\:\mathrm{has}\:\:\mathrm{no}\:\:\mathrm{derivative}\:\:\mathrm{at}\:\:\mathrm{x}\:\:=\:\mathrm{5}. \\ $$
Answered by ARUNG_Brandon_MBU last updated on 04/Feb/23
f ′(5)=lim_(x→5) ((f(x)−f(5))/(x−5))=lim_(x→5) ((∣x−5∣)/(x−5))  lim_(x→5^> ) ((∣x−5∣)/(x−5))=lim_(x→5^> ) ((x−5)/(x−5))=1  lim_(x→5^< ) ((∣x−5∣)/(x−5))=lim_(x→5^< ) ((5−x)/(x−5))=−1  lim_(x→5^> ) ((∣x−5∣)/(x−5)) ≠ lim_(x→5^< ) ((∣x−5∣)/(x−5))   hence f ′(5) does not exist.
$${f}\:'\left(\mathrm{5}\right)=\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left(\mathrm{5}\right)}{{x}−\mathrm{5}}=\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\frac{\mid{x}−\mathrm{5}\mid}{{x}−\mathrm{5}} \\ $$$$\underset{{x}\rightarrow\mathrm{5}^{>} } {\mathrm{lim}}\frac{\mid{x}−\mathrm{5}\mid}{{x}−\mathrm{5}}=\underset{{x}\rightarrow\mathrm{5}^{>} } {\mathrm{lim}}\frac{{x}−\mathrm{5}}{{x}−\mathrm{5}}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{5}^{<} } {\mathrm{lim}}\frac{\mid{x}−\mathrm{5}\mid}{{x}−\mathrm{5}}=\underset{{x}\rightarrow\mathrm{5}^{<} } {\mathrm{lim}}\frac{\mathrm{5}−{x}}{{x}−\mathrm{5}}=−\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{5}^{>} } {\mathrm{lim}}\frac{\mid{x}−\mathrm{5}\mid}{{x}−\mathrm{5}}\:\neq\:\underset{{x}\rightarrow\mathrm{5}^{<} } {\mathrm{lim}}\frac{\mid{x}−\mathrm{5}\mid}{{x}−\mathrm{5}} \\ $$$$\:\mathrm{hence}\:{f}\:'\left(\mathrm{5}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *