Menu Close

Show-that-the-minimum-value-of-sinh-x-ncosh-x-is-n-2-1-and-this-occurs-x-0-5ln-n-1-n-1-




Question Number 178354 by Spillover last updated on 15/Oct/22
Show that the minimum value  of sinh x+ncosh x is (√(n^2 −1))  and this occurs x=0.5ln (((n−1)/(n+1)))
Showthattheminimumvalueofsinhx+ncoshxisn21andthisoccursx=0.5ln(n1n+1)
Answered by Ar Brandon last updated on 16/Oct/22
y=sinhx+ncoshx  (dy/dx)=0 ⇒coshx+nsinhx=0  ⇒cothx=−n ⇒((e^(2x) +1)/(e^(2x) −1))=−n  ⇒(n+1)e^(2x) =n−1 ⇒x_(min) =(1/2)ln(((n−1)/(n+1)))  y_(min) =sinh(x_(min) )+ncosh(x_(min) )           =(1/2)((√((n−1)/(n+1)))−(√((n+1)/(n−1))))+(n/2)((√((n−1)/(n+1)))+(√((n+1)/(n−1))))           =(1/2)(((−2)/( (√(n^2 −1)))))+(n/2)(((2n)/( (√(n^2 −1)))))=((n^2 −1)/( (√(n^2 −1))))=(√(n^2 −1))
y=sinhx+ncoshxdydx=0coshx+nsinhx=0cothx=ne2x+1e2x1=n(n+1)e2x=n1xmin=12ln(n1n+1)ymin=sinh(xmin)+ncosh(xmin)=12(n1n+1n+1n1)+n2(n1n+1+n+1n1)=12(2n21)+n2(2nn21)=n21n21=n21
Commented by Spillover last updated on 16/Oct/22
thanks
thanks
Commented by Spillover last updated on 17/Oct/22
please explain the second line  from the end.
pleaseexplainthesecondlinefromtheend.
Commented by Ar Brandon last updated on 17/Oct/22
sinh(x_(min) )+ncosh(x_(min) )  =(1/2)(e^x_(min)  −e^(−x_(min) ) )+(n/2)(e^x_(min)  +e^(−x_(min) ) )  =(1/2)(e^((1/2)ln(((n−1)/(n+1)))) −e^(−(1/2)ln(((n−1)/(n+1)))) )+(n/2)(e^((1/2)ln(((n−1)/(n+1)))) +e^(−(1/2)ln(((n−1)/(n+1)))) )  e^((1/2)ln(((n−1)/(n+1)))) =e^(ln(((n−1)/(n+1)))^(1/2) ) =(((n−1)/(n+1)))^(1/2) =(√((n−1)/(n+1)))  e^(−(1/2)ln(((n−1)/(n+1)))) =(1/e^((1/2)ln(((n−1)/(n+1)))) )
sinh(xmin)+ncosh(xmin)=12(exminexmin)+n2(exmin+exmin)=12(e12ln(n1n+1)e12ln(n1n+1))+n2(e12ln(n1n+1)+e12ln(n1n+1))e12ln(n1n+1)=eln(n1n+1)12=(n1n+1)12=n1n+1e12ln(n1n+1)=1e12ln(n1n+1)

Leave a Reply

Your email address will not be published. Required fields are marked *