show-that-the-rectangular-solid-of-naximum-volume-that-can-be-inscribed-into-a-sphere-is-a-cube- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 26941 by Mr eaay last updated on 31/Dec/17 showthattherectangularsolidofnaximumvolumethatcanbeinscribedintoasphereisacube Answered by mrW1 last updated on 01/Jan/18 x2+y2+z2=R2weconsideronlythepartinthefirstoctant.V=xyz=xyR2−x2−y2∂V∂x=yR2−x2−y2−x2yR2−x2−y2=0⇒R2−x2−y2=x2⇒2x2+y2=R2…(i)∂V∂y=xR2−x2−y2−xy2R2−x2−y2=0⇒R2−x2−y2=y2⇒x2+2y2=R2…(ii)(i)+(ii):3(x2+y2)=2R2x2+y2=23R2…(iii)(i)−(iii):x2=R23⇒x=R3(ii)−(iii):y2=R23⇒y=R3⇒z=R2−R23−R23=R3⇒solidwithmax.volumeisacubewithsidelength=2R3,thevolumeisVmax=8R333. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158014Next Next post: f-x-x-2-cos-1-x-when-x-1-pi-1-pi-0-and-f-x-0-when-x-0-a-find-the-derivative-of-f-x-on-the-interval-of-1-pi-1-pi-b-compute-minf-x-and-maxf-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.