Menu Close

Show-that-the-sequence-x-n-1-x-n-does-not-converge-uniformly-on-0-2-by-showing-that-the-limit-function-is-not-continuous-on-0-2-




Question Number 158327 by Tawa11 last updated on 02/Nov/21
Show that the sequence    (x^n /(1   +   x^n ))    does not converge uniformly on  [0,  2]  by showing that the limit function is not continuous on    [0,  2]
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\:\:\:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{n}} }\:\:\:\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}\:\mathrm{uniformly}\:\mathrm{on}\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$$$\mathrm{by}\:\mathrm{showing}\:\mathrm{that}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{function}\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous}\:\mathrm{on}\:\:\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *