Menu Close

Show-that-the-square-of-every-odd-integer-is-of-the-form-8m-1-




Question Number 45439 by Tawa1 last updated on 12/Oct/18
Show that the square of every odd integer is of the form   8m + 1
Showthatthesquareofeveryoddintegerisoftheform8m+1
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Oct/18
(2k+1)^2 =4k^2 +4k+1  =4k(k+1)+1  now put k=1   8+1  in the form 8×1+1              put k=2   24+1 in the form   8×3+1          now assume for  k=r the statement is true  that is 4r(r+1)+1 in the form 8m+1    to show it[is true when k=r+1  put k=r+1  4(r+1)(r+2)+1  =4(r+1)(r+1+1)+1  =4{r(r+1)+r+r+1+1}+1  4r(r+1)+4(2r)+8+1  4r(r+1)+8(r+1)+1  form of 8m+1+8(r+1)+1
(2k+1)2=4k2+4k+1=4k(k+1)+1nowputk=18+1intheform8×1+1putk=224+1intheform8×3+1nowassumefork=rthestatementistruethatis4r(r+1)+1intheform8m+1toshowit[istruewhenk=r+1putk=r+14(r+1)(r+2)+1=4(r+1)(r+1+1)+1=4{r(r+1)+r+r+1+1}+14r(r+1)+4(2r)+8+14r(r+1)+8(r+1)+1formof8m+1+8(r+1)+1
Commented by Tawa1 last updated on 13/Oct/18
God bless you sir
Godblessyousir
Answered by MJS last updated on 13/Oct/18
odd integer o=2n+1  o^2 =(2n+1)^2   n=2k∨n=2k+1    n=2k       o^2 =(4k+1)^2 =16k^2 +8k+1=       =8(2k^2 +k)+1=8m+1       k=(n/2) ⇒ m=k(2k+1)=((n(n+1))/2)    n=2k+1       o^2 =(4k+3)^2 =16k^2 +24k+9=       =8(2k^2 +3k+1)+1=8m+1       k=((n−1)/2) ⇒ m=(k+1)(2k+1)=((n(n+1))/2)
oddintegero=2n+1o2=(2n+1)2n=2kn=2k+1n=2ko2=(4k+1)2=16k2+8k+1==8(2k2+k)+1=8m+1k=n2m=k(2k+1)=n(n+1)2n=2k+1o2=(4k+3)2=16k2+24k+9==8(2k2+3k+1)+1=8m+1k=n12m=(k+1)(2k+1)=n(n+1)2
Commented by Tawa1 last updated on 13/Oct/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *