Menu Close

Show-that-the-sum-of-the-cube-of-three-consecutive-number-gives-a-multiple-of-9-




Question Number 58410 by Tawa1 last updated on 22/Apr/19
Show that the sum of the cube of three consecutive  number gives a multiple of  9.
Showthatthesumofthecubeofthreeconsecutivenumbergivesamultipleof9.
Answered by mr W last updated on 22/Apr/19
S=(n−1)^3 +n^3 +(n+1)^3   =n^3 −3n^2 +3n−1+n^3 +n^3 +3n^2 +3n+1  =3n^3 +6n  =3n(n^2 +2)  if n=3k:  S=9k(9k^2 +2)=9×integer    if n=3k±1:  n^2 =9k^2 ±6k+1  ⇒S=3(3k±1)(9k^2 ±6k+3)=9(3k±1)(3k^2 ±2k+1)  =9×integer
S=(n1)3+n3+(n+1)3=n33n2+3n1+n3+n3+3n2+3n+1=3n3+6n=3n(n2+2)ifn=3k:S=9k(9k2+2)=9×integerifn=3k±1:n2=9k2±6k+1S=3(3k±1)(9k2±6k+3)=9(3k±1)(3k2±2k+1)=9×integer
Commented by Tawa1 last updated on 22/Apr/19
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 22/Apr/19
Where do we see  n = 3k±1  sir
Wheredoweseen=3k±1sir
Commented by mr W last updated on 22/Apr/19
every number n is one of following  three cases:  n=3k  n=3k+1  n=3k+2=3k−1  i.e. n=3k or n=3k±1
everynumbernisoneoffollowingthreecases:n=3kn=3k+1n=3k+2=3k1i.e.n=3korn=3k±1
Commented by Tawa1 last updated on 22/Apr/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *