Menu Close

show-that-the-variance-2-of-a-set-of-observations-x-1-x-2-x-n-with-mean-x-can-be-expressed-in-the-form-2-i-1-n-x-i-2-n-x-2-




Question Number 88592 by Rio Michael last updated on 11/Apr/20
show that the variance δ^2  of a set of observations x_1 ,x_2 ,...x_n  with mean  x^_  can be expressed in the form  δ^2  = ((Σ_(i=1) ^n x_i ^2 )/n) − x^� ^(2 )
showthatthevarianceδ2ofasetofobservationsx1,x2,xnwithmeanx_canbeexpressedintheformδ2=ni=1xi2nx¯2
Answered by mr W last updated on 11/Apr/20
acc. to definition of variance:  σ^2 =(1/n)Σ_(i=1) ^n (x_i −x^(−) )^2   σ^2 =(1/n)Σ_(i=1) ^n (x_i ^2 −2x^(−) x_i +x^2 ^(−) )  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −2x^(−) Σ_(i=1) ^n x_i +Σ_(i=1) ^n x^2 ^(−) }  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −2x^(−) (nx^(−) )+x^2 ^(−) n}  σ^2 =(1/n){Σ_(i=1) ^n x_i ^2 −nx^2 ^(−) }  σ^2 =(1/n)Σ_(i=1) ^n x_i ^2 −x^2 ^(−)
acc.todefinitionofvariance:σ2=1nni=1(xix)2σ2=1nni=1(xi22xxi+x2)σ2=1n{ni=1xi22xni=1xi+ni=1x2}σ2=1n{ni=1xi22x(nx)+x2n}σ2=1n{ni=1xi2nx2}σ2=1nni=1xi2x2
Commented by Rio Michael last updated on 11/Apr/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *