Menu Close

show-that-U-n-1-nx-n-n-1-2-x-2-n-n-1-n-2-3-x-3-for-which-U-n-1-x-n-




Question Number 41721 by Rio Michael last updated on 11/Aug/18
show that  U_n = 1+ nx + ((n(n−1))/(2!)) x^(2  ) + ((n(n−1)(n−2))/(3!))x^3 + ....  for which U_n = (1 + x)^n .
$${show}\:{that} \\ $$$${U}_{{n}} =\:\mathrm{1}+\:{nx}\:+\:\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}\:{x}^{\mathrm{2}\:\:} +\:\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +\:…. \\ $$$${for}\:{which}\:{U}_{{n}} =\:\left(\mathrm{1}\:+\:{x}\right)^{{n}} . \\ $$
Commented by maxmathsup by imad last updated on 12/Aug/18
let p(x) =(1+x)^n     we have p(x)=Σ_(k=0) ^∞   ((p^((k)) (0))/(k!)) x^k   =Σ_(k=0) ^n   ((p^((k)) (0))/(k!)) x^k  +Σ_(k=n+1) ^∞   ((p^((k)) (0))/(k!))  but for k>n   p^((k)) (x)=0⇒  p(x) =Σ_(k=0) ^n   ((p^((k)) (0))/(k!)) x^k    but binomial formulae give  p(x) =Σ_(k=0) ^n  C_n ^k   x^k   = C_n ^0   +C_n ^1  x  + C_n ^n  x^2  +....+ C_n ^n  x^n   =1+nx +((n(n−1))/2) x^2  +.....+x^n     (so the sum is not infinite)
$${let}\:{p}\left({x}\right)\:=\left(\mathrm{1}+{x}\right)^{{n}} \:\:\:\:{we}\:{have}\:{p}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:{x}^{{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:{x}^{{k}} \:+\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\:\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:\:{but}\:{for}\:{k}>{n}\:\:\:{p}^{\left({k}\right)} \left({x}\right)=\mathrm{0}\Rightarrow \\ $$$${p}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:{x}^{{k}} \:\:\:{but}\:{binomial}\:{formulae}\:{give} \\ $$$${p}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{x}^{{k}} \:\:=\:{C}_{{n}} ^{\mathrm{0}} \:\:+{C}_{{n}} ^{\mathrm{1}} \:{x}\:\:+\:{C}_{{n}} ^{{n}} \:{x}^{\mathrm{2}} \:+….+\:{C}_{{n}} ^{{n}} \:{x}^{{n}} \\ $$$$=\mathrm{1}+{nx}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\:{x}^{\mathrm{2}} \:+…..+{x}^{{n}} \:\:\:\:\left({so}\:{the}\:{sum}\:{is}\:{not}\:{infinite}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *