Menu Close

show-that-x-0-n-xp-x-np-given-that-p-x-n-C-x-p-x-q-n-x-




Question Number 50856 by peter frank last updated on 21/Dec/18
show that  Σ_(x=0) ^n xp(x)=np given   that p(x)=^n C_x p^x q^(n−x)
$${show}\:{that} \\ $$$$\underset{\mathrm{x}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}{xp}\left({x}\right)={np}\:{given}\: \\ $$$${that}\:{p}\left({x}\right)=^{\mathrm{n}} {C}_{\mathrm{x}} {p}^{{x}} {q}^{{n}−{x}} \\ $$
Answered by Smail last updated on 21/Dec/18
Q(p)=Σ_(x=0) ^n p(x)=Σ_(x=0) ^n ^n C_x p^x q^(n−x) =(p+q)^n   ((dQ(p))/dp)=Σ_(x=0) ^n ^n C_x (xp^(x−1) )q^(n−x) =n(p+q)^(n−1)   =Σ_(x=0) ^n x^n C_x p^x q^(n−x) ×(1/p)=n(p+q)^(n−1)   =Σ_(x=0) ^n x(^n C_x p^x q^(n−x) )=n(p+q)^(n−1) p  Σ_(x=0) ^n xp(x)=np(p+q)^(n−1)
$${Q}\left({p}\right)=\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}{p}\left({x}\right)=\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{x}} {p}^{{x}} {q}^{{n}−{x}} =\left({p}+{q}\right)^{{n}} \\ $$$$\frac{{dQ}\left({p}\right)}{{dp}}=\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{x}} \left({xp}^{{x}−\mathrm{1}} \right){q}^{{n}−{x}} ={n}\left({p}+{q}\right)^{{n}−\mathrm{1}} \\ $$$$=\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}{x}\:^{{n}} {C}_{{x}} {p}^{{x}} {q}^{{n}−{x}} ×\frac{\mathrm{1}}{{p}}={n}\left({p}+{q}\right)^{{n}−\mathrm{1}} \\ $$$$=\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}{x}\left(^{{n}} {C}_{{x}} {p}^{{x}} {q}^{{n}−{x}} \right)={n}\left({p}+{q}\right)^{{n}−\mathrm{1}} {p} \\ $$$$\underset{{x}=\mathrm{0}} {\overset{{n}} {\sum}}{xp}\left({x}\right)={np}\left({p}+{q}\right)^{{n}−\mathrm{1}} \\ $$
Commented by Smail last updated on 21/Dec/18
I think you are missing something.
$${I}\:{think}\:{you}\:{are}\:{missing}\:{something}. \\ $$
Commented by peter frank last updated on 21/Dec/18
thank you
$${thank}\:{you} \\ $$
Commented by Smail last updated on 22/Dec/18
You are welcome
$${You}\:{are}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *